

Internet of Things

Jordi Casademont jordi.casademont@upc.edu

1

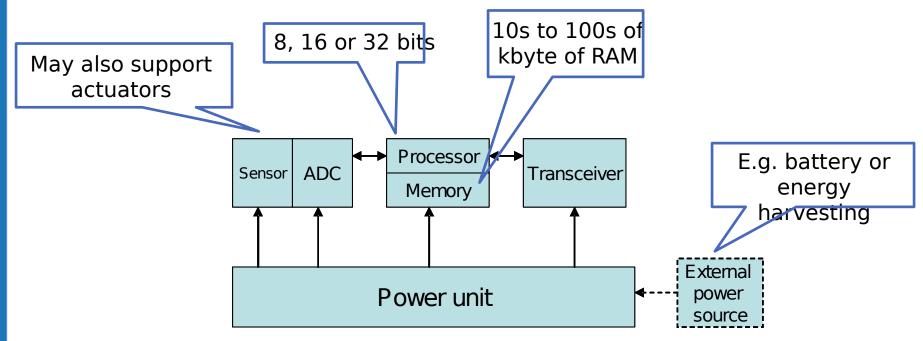
Jordi Casademont

- PhD in Telecommunications Engineering
- Professor at the Universitat Politècnica de Catalunya
 - Escola Tècnica Superior de Telecomunicació de Barcelona (ETSETB)
 - Vice-Dean Head of Master Studies
 - Director of Master in Telecommunications Engineering
 - Director of the "Grau en Enginyeria Telemàtica" (2009-2012)
 - Network Engineering Department
 - Director of the department (2003-2006)
 - Wireless Network Group
- Expertise
 - Wireless Local Area Networks: 802.11, 802.15.4
 - Internet Protocols
 - Vehicular Networks: 802.11p, Intelligent Transport Systems

Internet of things

Definition:

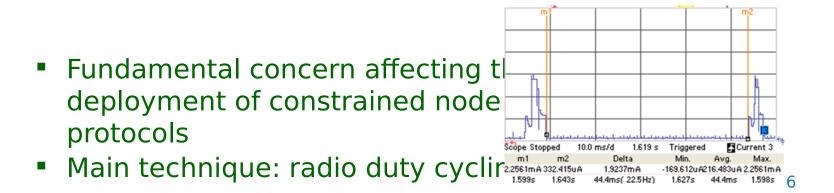
 The Internet of Things is a network of connected devices which communicate over the Internet, and they do so autonomously, machine to machine, without the need for human intervention


Internet of Things

IoT device

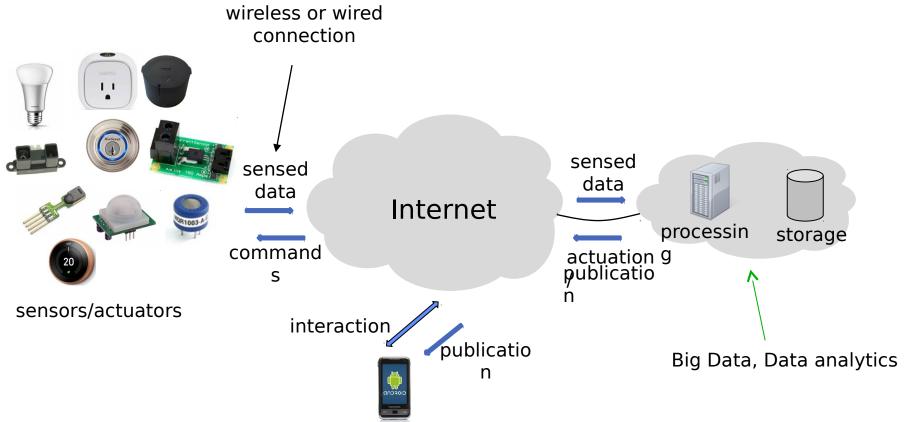
Resource constraints

- Small size often practical (e.g. to avoid altering the associated object)
- Sufficient for the tasks to be done
- Economic feasibility

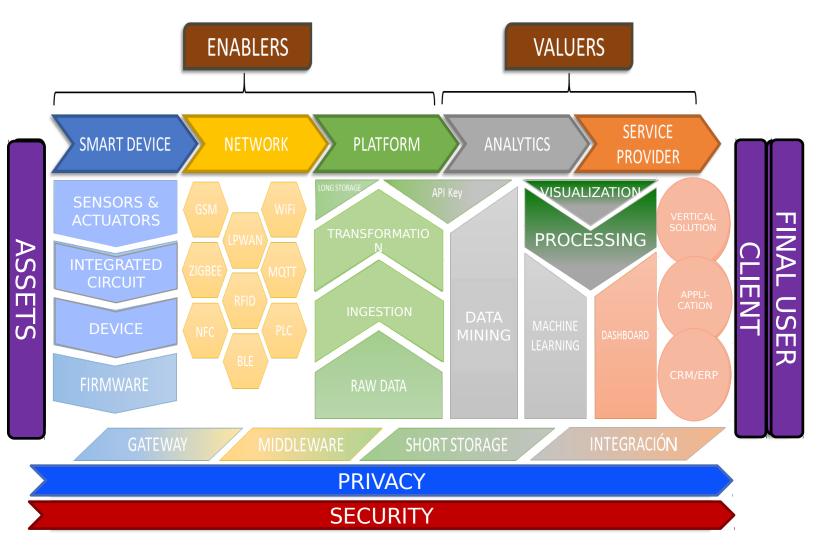


IoT device

- Energy limitations
 - Example
 - Typical current consumption of a constrained node platform
 - Cell coin battery of 230 mAh


	Current consumption	Lifetime
Active (Tx/Rx) mode	20 mA	11.5 hours
Sleep mode	1 μΑ	26.25 years

IoT ecosystem



UPC - UNQ

IoT value chain

IoT: business

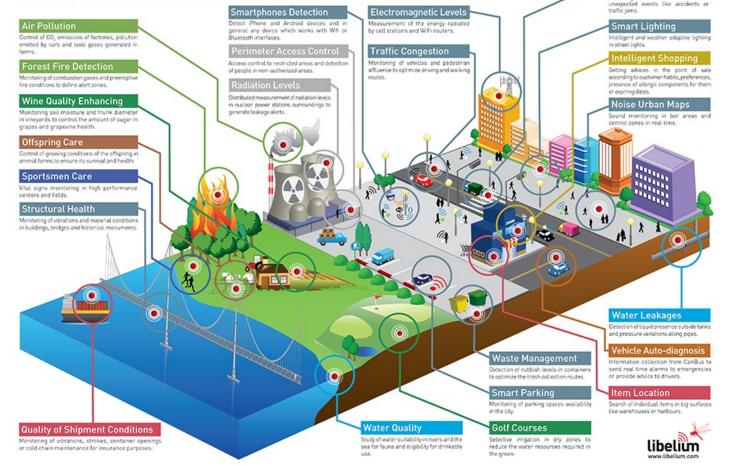
- Business opportunities
 - Improving existing products
 - New products
 - New ways to sell products
 - Selling "things"> selling services
 - Capitalizing information
- $\square > 1$ trillion \$ market
 - By 2020 (IDC forecast)

M2M World of Connected Services

The Internet of Things

Boston | London

+44 (0)845 533 1758



Smart Roads Warning messages and diversions according to climate conditions and

IoT Applications

Libelium Smart World

http://www.libelium.com/resources/top_50_iot_sensor_applications_rank ing

Home automation

- Intelligent thermostats: Nest Learning Thermostat (\$249)
 - 802.11, 802.15.4, BLE

Temperature / humidity sensors

- ATIM works with:
 - Sigfox
 - LoraWan
 - Local Modbus
- Enless Wireless

Temperature transmitter

Domotic & Home Automation	
---------------------------	--

53	Energy and Water Use Energy and water supply consumption monitoring to obtain advice on how to save cost and resources.
54	Remote Control Appliances Switching on and off remotely appliances to avoid accidents and save energy.
55	Intrusion Detection Systems Detection of windows and doors openings and violations to prevent intruders.
56	Art and Goods Preservation Monitoring of conditions inside museums and art warehouses.

JPC - UNQ

Smart health

Libelium MySignals

eHealth

Fall Detection

Assistance for elderly or disabled people living independent.

Medical Fridges

Control of conditions inside freezers storing vaccines, medicines and organic elements.

Sportsmen Care Vital signs monitoring in high performance centers and fields.

Patients Surveillance 60

Monitoring of conditions of patients inside hospitals and in old people's home.

Ultraviolet Radiation

Measurement of UV sun rays to warn people not to be exposed in certain hours.

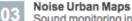
MySignals 0 MySignals

Sport monitoring

Smart cities

Libelium and Urbiotica

Smart Cities



Monitoring of parking spaces availability in the city.

00	Stru

Structural health

Monitoring of vibrations and material conditions in buildings, bridges and historical monuments.

Sound monitoring in bar areas and centric zones in real time.

Smartphone Detection Detect iPhone and Android devices and in general any device which works with WiFi or Bluetooth interfaces.

Eletromagnetic Field Levels

Measurement of the energy radiated by cell stations and and WiFi routers.

Traffic Congestion

Monitoring of vehicles and pedestrian levels to optimize driving and walking routes.

Smart Lighting

Intelligent and weather adaptive lighting in street lights.

Waste Management

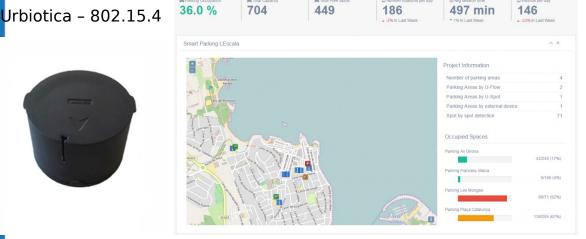
Detection of rubbish levels in containers to optimize the trash collection routes.

Smart Roads

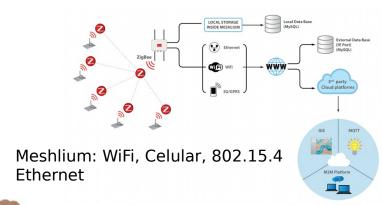
Intelligent Highways with warning messages and diversions according to climate conditions and unexpected events like accidents or traffic jams.



Smart cities Smart parking

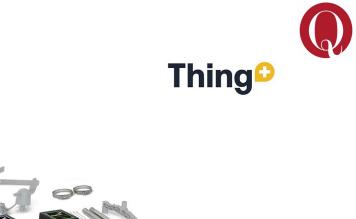

Configuration / Commissioning

Reset with a magnet



Smart cities

Noise and other parameters monitoring



Sensors:

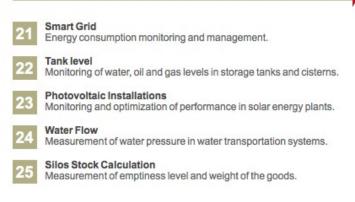
- Noise / Sound Level Sensor (dBA / LeqA) + Calibration Tests
- > Particle Matter (PM1 / PM2.5 / PM10) Dust Sensor
- > Carbon Monoxide (CO) [Calibrated] (low and high concentrations)
- Carbon Dioxide (CO₂) [Calibrated]
- Molecular Oxygen (O₂) [Calibrated]
- Ozone (O₃) [Calibrated]
- Nitric Oxide (NO) [Calibrated] (low concentrations)
- Nitric Dioxide (NO₂) [Calibrated] (high accuracy)
- Sulfur Dioxide (SO₂) [Calibrated] (high accuracy)
- > Ammonia (NH₃) [Calibrated] (low and high concentrations)
- Methane (CH₄) [Calibrated] and other combustible gases

Smart cities □ Price: €5200

https://www.the-iot-marketplace.com

Smart metering

NAS solution with LoraWAN



CONTROLLER

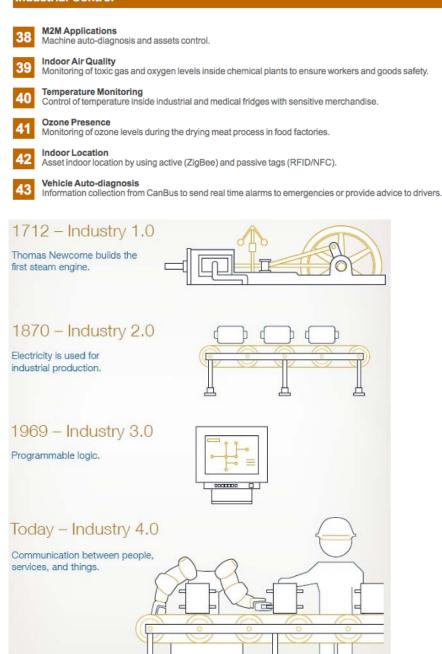
LoRaWAN^{TIII}

Smart Metering

CONNIT solution with Sigfox

JPC - UNQ

□ Y-RIG water meter with Sigfox


- From very complete and integral systems:
 - ABB, Bosch, …
- To very basic systems:
 - Nordic Automation Systems (NAS)
 - ...

<u>http://www.expo21xx.com/i</u> <u>ndustry4/</u>

Logistics

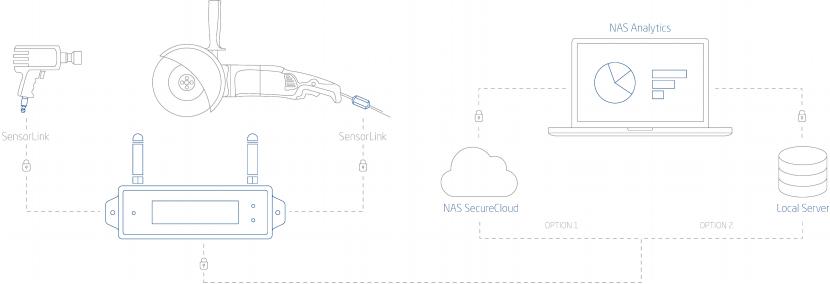
- 34 Quality of Shipment Conditions Monitoring of vibrations, strokes, container openings or cold chain maintenance for insurance purposes.
- 35 Item Location Search of individual items in big surfaces like warehouses or harbours.
- 36 Storage Incompatibility Detection Warning emission on containers storing inflammable goods closed to others containing explosive material.
 - Fleet Tracking Control of routes followed for delicate goods like medical drugs, jewels or dangerous merchandises.

Industrial Control

NAS products:

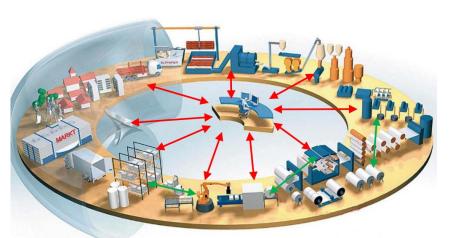
- Generic and pneumatic tool sensors
 - Vibration monitoring
 - Presence monitoring
 - Tool identification and inventory management
 - Air supply monitoring
 - Battery lifetime up to 2 years
 - Bluetooth Low Energy

Gateway: Cellular, Ethernet, Modbus



NAS solution

- Reduce production costs
- Prolong lifetime of tools
- Protect employees
- Usage statistics and inventory




UPC - UNQ

□ ABB Ability

Pack of more than 180 solutions and services

Monitor

	SimpRant 01 ADM to Sim Survas 34 - 3x211 despres deb /f Kan Admin - Device Assemblied	C A	0
gwoene a			(C) +C0 +0007
equilibrium (B)			
nifeet (* v	Demo		
9 Destinat			
A research	Panel Photo turner opurt and and, considering all than open		
O Serrep		60" x0.0" 60" texts	
DESCELE-1		ED Transmitters Although Addition	
Alforential y			
IN SACEBRANS			
A1070 (0.)			
CONTROL			
entoenter >			

Optimize

Control

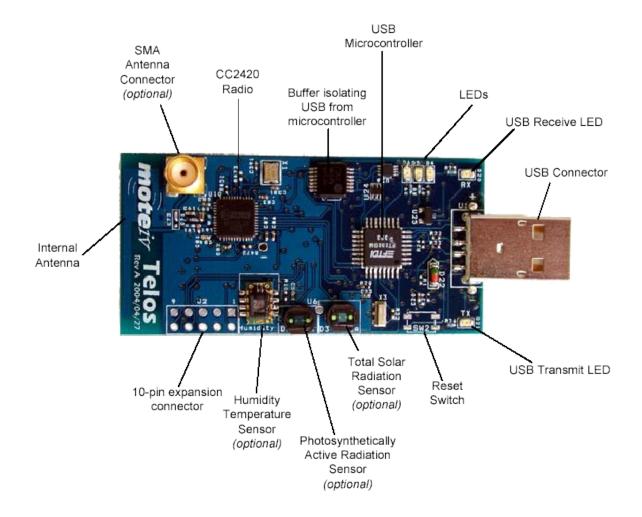
Sensors and actuators

Origins

Based on a open hardware project from University of California that results in TelosB motes, Tmote SKY, TelosIV, ...

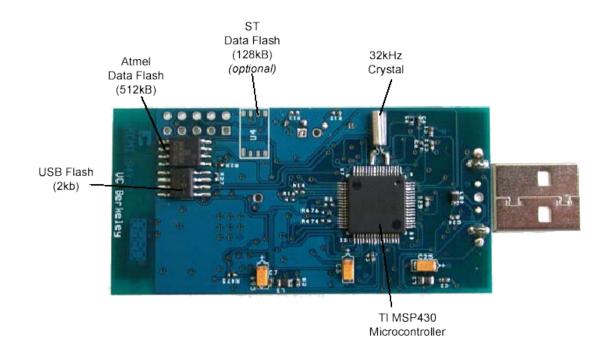
Later manufactured by

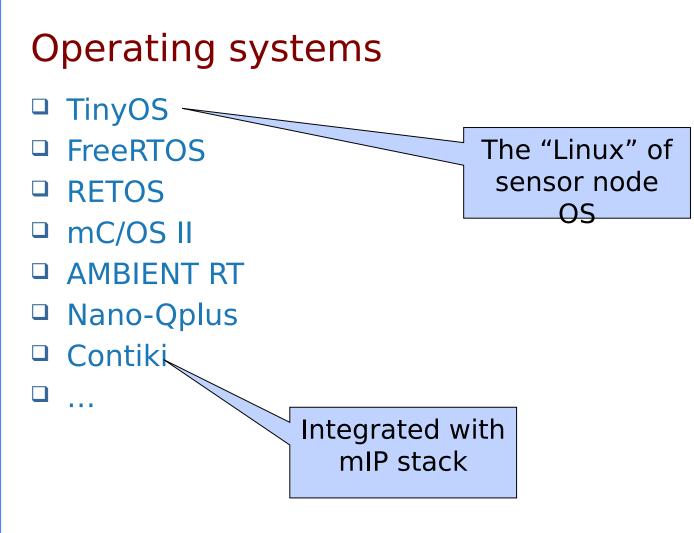
- Crossbow
- MaxFor
 - Distributed by Advantic
- Memsic
- Zolertia (Made in Barcelona)
 - Z1



Sensor board components

Example: TELOS mote



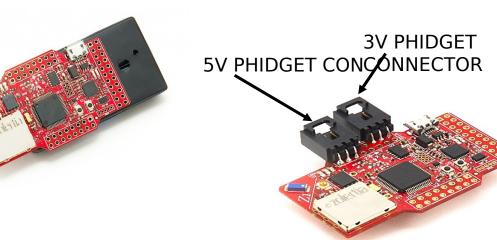

Sensor board components

Example: TELOS mote

https://www.postscapes.com/internet-of-things-software-gui de/

Z1 Power consumption

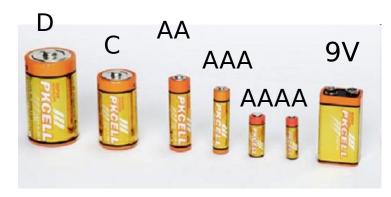
	IC	Operating Range	Current Consumption	Notes
MCU	MSP430f2617	1.8V to 3.6V	0.IµA	OFF Mode
			0.5µA	Standby Mode
			0.5mA	Active Mode @IMHz
			< 10mA	Active Mode @16MHz
Radio	CC2420	2.1V to 3.6V	<1µA	OFF Mode
			20µA	Power Down
			426µA	IDLE Mode
			18.8mA	RX Mode
			17.4mA	TX Mode @ 0dBm
Accelerometer	ADXL345	1.8V to 3.6V	0.1µA	Standby
			40uA to 145uA	Active Mode
Flash	M25P16	2.7V to 3.6V	Aul	Deep Power Down
			4mA to 15mA	Active Mode
Temperature	TMPI02	1.4V to 3.6V	Aul	Shutdown Mode
Sensor			Ι5μΑ	Active Mode



Powering

Using USB

5 Volts



Using batteries

- 2 * 1,5 V AA
 - With batteries lower that 2,1V the radio is not working

Batteries:

- Examples
- Button 250 mAh (3 V)
- AA 2000 mAh (1,5 V)
- AAA 1000 mAh (1,5 V)
- 9V 500 mAh

Parts of a sensor

- Confusion between sensor and transducer, so we will assume a sensor is made of:
 - Transducer
 - Converts a physical magnitude to an electrical parameter

Signal conditioning circuit

- In some cases it is not used
- Adapts the electrical signal to something that can be easily used, such a ADC
 - Minimizes the noise
 - Enhances the signal range
 - Linearizes the response
 - Compensates the response in front of other variations such voltage, temperature, ...

Temperature

- Thermistor
 - Resistance that varies with temperature
- Thermocoupler
 - Junction of different metals
- Infrared
 - Allows distance measurement
 - Range from -70°C to +380°C
 - Accuracy: 0.5°C

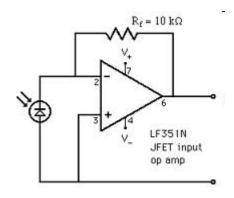
http://www.phidgets.com



Air humidity (hydrometer)

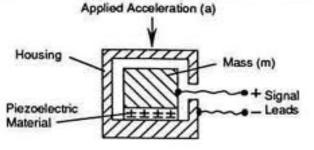
- Measures the relative humidity (RH) of the air
- Uses a resistance that varies with humidity
- Example:
 - Measuring range: 20% 90% RH
 - Accuracy: 5%
 - Sensitivity: 1%
 - Signal collection period: 2 s

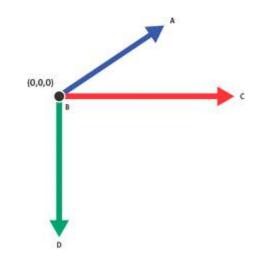
Light



Photodiode

- Semiconductor device that converts light into current
- Ligth rang:
 - 10⁻⁴ lux Moonless, overcast night sky (starlight)
 - 0.002 lux Moonless clear night sky with airglow
 - 0.27-1.0 lux Full moon on a clear night
 - 3-4 lux Dark limit of civil twilight under a clear sky
 - 50 lux Family living room lights
 - 80 lux Office building hallway/toilet lighting
 - 100 lux Very dark overcast day
 - 320-500 lux Office lighting
 - 400 lux Sunrise or sunset on a clear day.
 - 1,000 lux Overcast day; typical TV studio lighting
 - 10,000-25,000 lux Full daylight (not direct sun)
 - 32,000-130,000 lux Direct sunlight
- Photoresistor or light-dependent resistor (LDR) or photocell
 - It is a light-controlled variable resistor

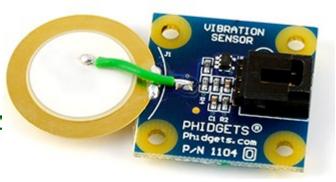


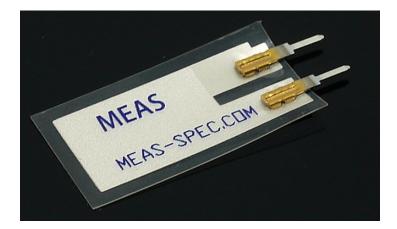


Acceleration

- Basics
 - Piezoelectric
 - Magnetic inductior
 - Capacity effect

- Can be used as movement sensor
- Can be used as inclinometers using the gra
- Example:
 - 1D, 2D or 3D
 - Acceleration range in g



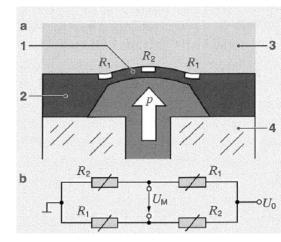


Vibration

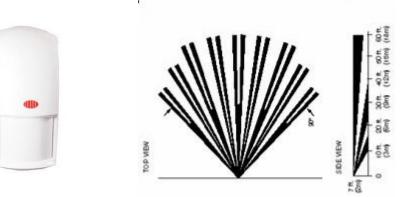
- Piezoelectric
 - Bending results in a voltage
 - Current consumption: 400 m/

Force and pressure

- Piezoelectric
- Resistive
 - Depending of the pressure
- Pressure

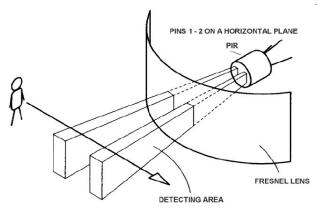

UPC - UNQ

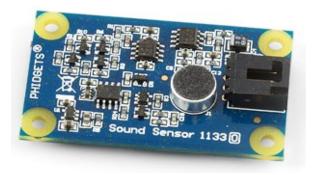
- Barometer
- Example:
 - Minimum: -25 kPa
 - Maximum: 25 kPa
 - Response time: 1 ms



Presence

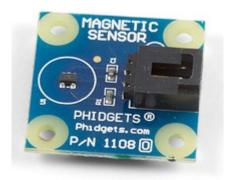
Passive InfraRed (PIR)


- Measures the difference of infrared signal received
- Human bodies produce differences in temperature
- Example:
 - Up to 5 meters for a person moving 0.5 to 1.5 m/s



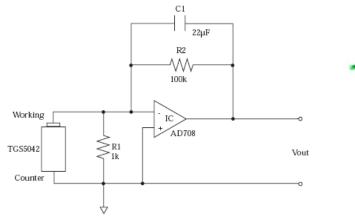
Sound

- Microphone
 - Range of frequencies (Hz)
 - Volume (dB)
 - Example:
 - Resolution: 30 mV/dB
 - Input range: 50 dB to 100 dB
 - Error (@1 kHz): 3 dB
 - Input frequency range: 100 Hz to 8 kHz



Magnetic field

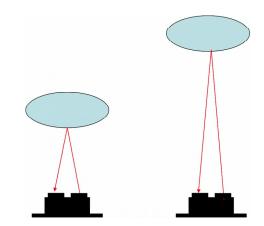
- Magnetometer
 - Measures de magnetic field strength
 - Can be used as a compass
 - Can be scalar (measuring the total magnetic field) or vector based (measuring each component of the field)



Gas

Electrochemical

- Results in small current from a chemical reaction
- Needs to be replaced periodically
- Can detect:
 - CO, CO₂, NO₂, CH₄, NH₃, O₂ or smoke



Measuring distances: Infra-red

- Infra-red reflective sensor
 - Infra-red LED + phototransistor
 - Measures distances up to 10 cm away


Measuring distances: Ultrasounds devices

- LV- MaxSonar EZ2
 - Freq. 42 kHz
 - Range up to 6.45 m

□ SRF08

- Freq. 40 kHz
- Range up to 6 m
- Gain adjustment
- Able to receive several echoes
- Power consumption: 3 mA (stand-by); 15 mA (working)
- □ SRF02
 - Range up to 6 m
 - 1 transductor (emission and reception)
 - Power consumption: 4 mA

JPC - UNQ

Actuators

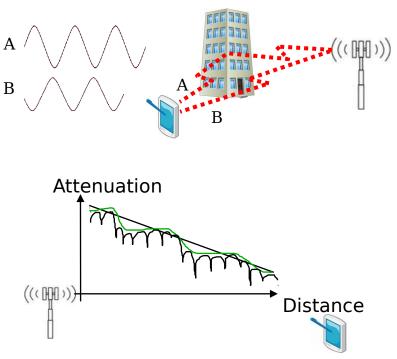
- Digital relay
 - Electric switch (mechanic)
 - Powered by 5 V and controlled by a digital signal
 - Able to control up to 7 A 240 V AC

Sensors & Actuators

- More information
 - https://en.wikipedia.org/wiki/List_of_sensors
 - http://www.phidgets.com

Terminado

💛 Phidgets Inc Unique and Easy to	Use USB Interfaces - Mo	zilla Firefox				- 🗆 ×
	adores Herramien <u>t</u> as Ay					
🔇 >> C X 🔬 🦻	http://www.phidgets.com/	products.php?category=1	☆ -	Goog 🕈 😽	gle	P
🔎 Más visitados 🏟 Comenzar con Firef	ox 脑 ELPAIS.es: El diario d	ă				
Phidgets Inc Unique and Easy	to U 🔸					~
phidg	ets Home	cts for USB Sensing and Control Forums Drivers Programming Policies Contact Us N	iews Dealer	•s Logir	n Cart '등	
	Sensors		·			
USD Search Search	1015 -	PhidgetLinearTouch Works through 1/8 inch of glass of plastic Recognizes both contact and proximity; can be used as a slider or as an array of buttons Connects directly to a computer's USB port	Quantity 1 5 10 25 50	Price \$48.70 \$46.80 \$45.30 \$43.85 \$41.40	In Stock Qty: 100+ Add	
Fast Add - SBC I/O Boards	(\bigcirc)	PhidgetCircularTouch Works through 1/8 inch of glass or plastic Recognizes both contact and proximity; can be used as a slide-wheel or as an array of buttons Plugs directly into a computer's USB port	Quantity 1 5 10 25 50	Price \$48.70 \$46.80 \$45.30 \$43.85 \$41.40	In Stock Qty: 100+ Add	
Sensors – Distance/Range Force/Pressure Touch Motion Environmental Input		PhidgetGPS Provides Position, Velocity and Direction Position Accuracy of 2.5m CEP (best case) Battery Life (fully charged): 1 month Connects directly to a computer's USB Port	Quantity 1 5 10 25 50	Price \$92.55 \$88.85 \$86.10 \$83.30 \$78.70	In Stock Qty: 74 Add	
Voltage/Current - Motors Servo Controllers Servo Motors DC Controllers DC Motors		PhidgetTemperatureSensor IR Infra Red thermometer for non contact temperature measurements Thermometer is Factory collibrated Temperature range of -70 to 380°C Connects directly to a computer's USB Port	Quantity 1 5 10 25 50	Price \$87.70 \$84.20 \$81.55 \$78.90 \$74.55	In Stock Qty: 50 Add	
Stepper Controllers Stepper Motors Relays RFID Remote Control Displays		PhidgetEncoder HighSpeed 4-Input Reads up to 4 encoders simultaneously Time Resolution of 1 µs Includes 4 Digital Inputs for detecting the state of switches and sensors Connects directly to a USB port on your PC	Quantity 1 5 10 25 50	Price \$97.40 \$93.55 \$90.60 \$87.70 \$82.80	In Stock Qty: 100+ Add	
Adapters LEDs Switches	· DIANA	PhidgetTemperatureSensor 4-Input Supports up to four J, K, E and T-type thermocouples Outputs temperature in degrees Calsius	Quantity 1 5	Price \$97.40 \$93.55	In Stock Qty: 100+	•


Wireless communication technologies in IoT

Communication Range

- Depends on:
 - Attenuation:
 - Frequency band
 - Environment:
 - Obstacles, foliage, buildings
 - Multipath
 - Transmitted power
 - Receiver sensitivity
 - Antenna

((()))

JPC - UNO

Relevant frequency bands

Frequency band	Availability	Applications	
6.765 - 6.795 MHz	Worldwide	ISM	
13.553 - 13.567 MHz	Worldwide	ISM, RFID	
26.957 - 27.283 MHz	Worldwide	ISM, ham radio	
40.66 - 40.70 MHz	Worldwide	ISM	
433.05 - 434.79 MHz	Europe, Africa and part of Asia	ISM, RFID	
865 - 868 MHz	Europe	WSN, RFID	
868 – 870 MHz	Europe	Non-specific low power data devices	
902 - 928 MHz	Americas, Greenland and some Pacific Islands	ISM, WPAN, cordless phones, WSN, RFID	
2.400 - 2.4835 GHz	Worldwide	ISM, WLAN, WPAN, cordless phones, WSN, RFID	
5.725 - 5.875 GHz	Hz Worldwide ISM, WLAN, cordless phones		
24 - 24.25 GHz	Worldwide	ISM, Short Range Devices	
59.3 - 62 GHz	Worldwide	ISM, Short Range Devices	

ISM (industrial, scientific and medical) radio bands are reserved internationally for the use of radio frequency energy for industrial, scientific and medical purposes other than telecommunications

RFID (Radio-frequency identification) is the wireless non-contact use of radio-frequency electromagnetic fields to transfer data, for the purposes of automatically identifying and tracking tags attached to objects

Ham radio or amateur radio is a radio frequency spectra for purposes of private recreation, non-commercial exchange of messages, wireless experimentation, self-training, and emergency communication

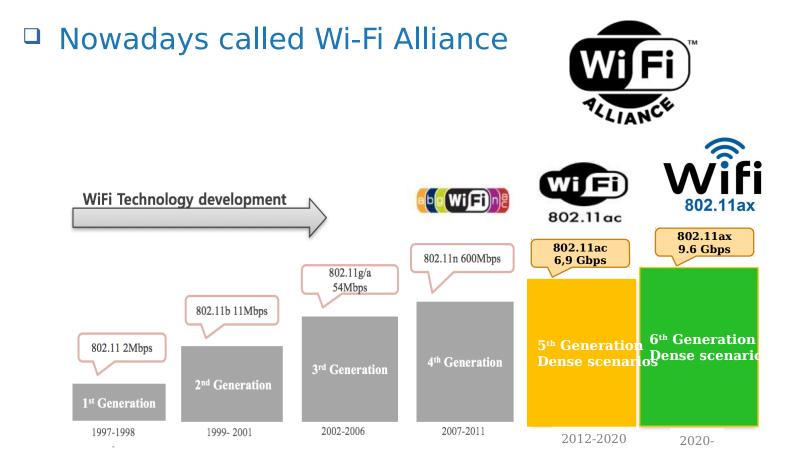
http://www.erodocdb.dk/docs/doc98/official/pdf/ERCRep025.pdf

Radio frequencies for IoT

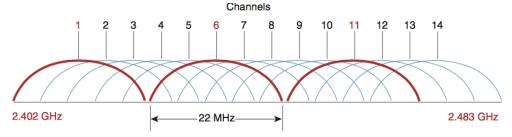
- □ ISM bands
 - 433 MHz
 - 868 MHz
 - 915 MHz
 - 2,4 GHz
 - 5 GHz
 - UWB (3,6 10,1 GHz)
 - Ultra Wide Band

433 MHz sensor gateway

Wireless Local Area Networks: Wi-Fi (IEEE 802.11)


802.11a/b/g/n/ac 802.11ah

IEEE 802.11 evolution


Partnership WECA: Wireless Ethernet Compatibility Alliance

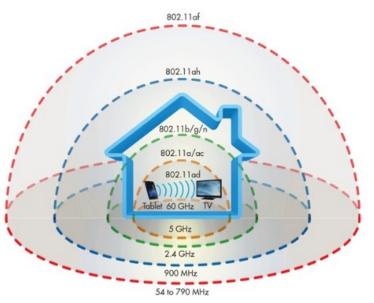
802.11 Spectrum

2,4 GHz5 GHz

Transmitted power

- 2,4 GHz: 100 mW EIRP
- 5 GHz:
 - 200 mW indoors
 - 1 W (DFS + TPC)

CHANNEL NUMBER	FREQUENCY MHZ	EUROPE (ETSI)	NORTH AMERICA (FCC)	JAPAN
36	5180	Indoors	 ✓ 	~
40	5200	Indoors	v	v
44	5220	Indoors	v	~
48	5240	Indoors	v	v
52	5260	Indoors / DFS / TPC	DFS	DFS / TPC
56	5280	Indoors / DFS / TPC	DFS	DFS / TPC
60	5300	Indoors / DFS / TPC	DFS	DFS / TPC
64	5320	Indoors / DFS / TPC	DFS	DFS / TPC
100	5500	DFS / TPC	DFS	DFS / TPC
104	5520	DFS / TPC	DFS	DFS / TPC
108	5540	DFS / TPC	DFS	DFS / TPC
112	5560	DFS / TPC	DFS	DFS / TPC
116	5580	DFS / TPC	DFS	DFS / TPC
120	5600	DFS / TPC	No Access	DFS / TPC
124	5620	DFS / TPC	No Access	DFS / TPC
128	5640	DFS / TPC	No Access	DFS / TPC
132	5660	DFS / TPC	DFS	DFS / TPC
136	5680	DFS / TPC	DFS	DFS / TPC
140	5700	DFS / TPC	DFS	DFS / TPC
149	5745	SRD	 ✓ 	No Access
153	5765	SRD	 ✓ 	No Access
157	5785	SRD	 ✓ 	No Access
161	5805	SRD	 ✓ 	No Access
165	5825	SRD	v	No Access

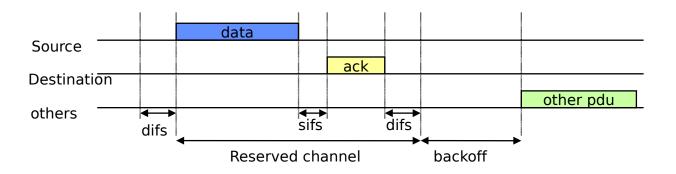


IEEE 802.11 Evolution (IEEE Std 802.11-2016)

- 802.11af (2013): Television very high throughput (TVHT) – Clause 22
 - Utilization of Wi-Fi technology within unused white spaces of licensed TV spectrum (VHF and UHF bands between 54 and 790 MHz)
 - Data rates: from 1,8 Mbps to 568,9 Mbps
 - Cognitive radio and geolocation techniques to avoid interference with digital TV

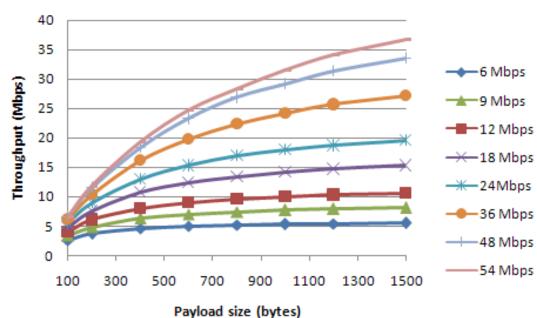
□ 802.11ah (2016) or HaLow:

Utilizes sub 1 GHz
 license-exempt bands to
 provide extended range
 Wi-Fi networks



802.11 – Frame Acknowledgement

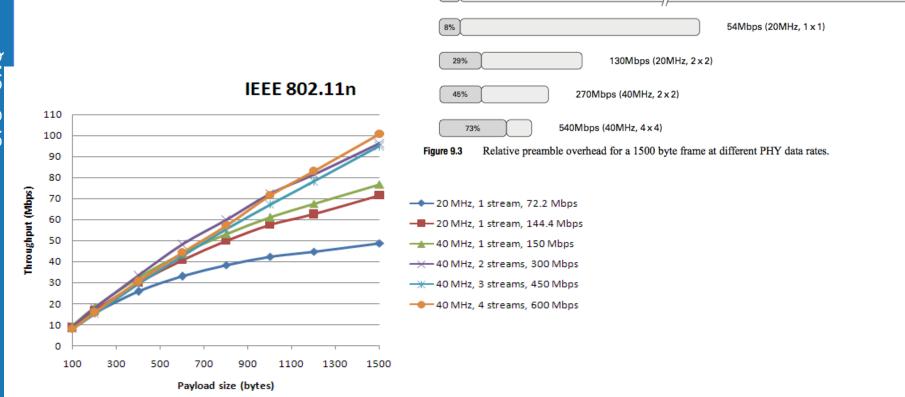
- Error control in the radio medium:
 - Acknowledgement of a correct received frame (ACK)
 - DIFS (DCF Inter-Frame Spacing): time to prioritize
 - SIFS (Short inter-frame spacing)
 - SIFS < DIFS
 - The ack has to wait less, so it has more priority
 - If the acknowledgement is not received, the station retransmits the packet but without preference in front of other stations


802.11 – Multiple Access

- Carrier Sense Multiple Access / Collision Avoidance
 - When someone wants to transmit first it listens to the channel
 - If it's free during DIFS time, it transmits
 - If it's busy waits until the transmission ends, waits DIFS time and after that enters in random backoff
 - When finishing the backoff, if the medium continues free, it transmits
 - If meanwhile is in backoff activity is detected, the timer is stopped until rest state is reached for a DIFS time and after that is reactivated
 - The timer is not reinitialized, so to avoid to harm stations that are waiting in front the ones that have arrived recently
 - When the timer expires and the channel is free, it transmits

802.11g throughput performance

IEEE 802.11g


Capacity in IEEE 802.11n

□ Limited by the CSMA/CA MAC (DIFS, SIFS, headers, ...)

Preamble (% overhead) Pavload

1%

Irreducible overhead

6Mbps (20MHz, 1 x 1)

Improvements

Basic Throughput enhancements

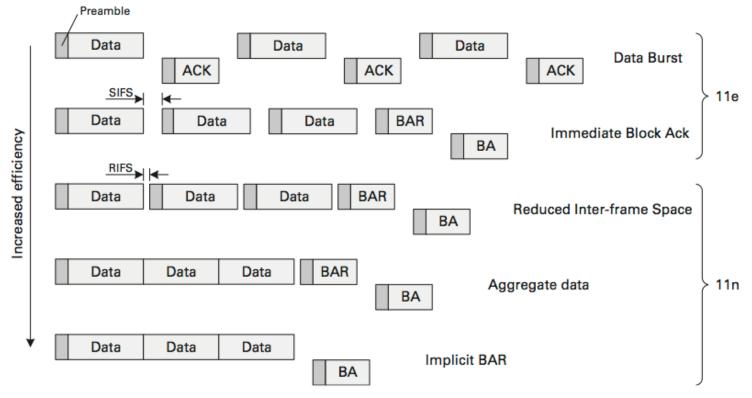


Figure 9.4 Basic throughput enhancements to the 802.11 MAC.

802.11n throughput performance

 802.11n performance with frame aggregation of 65535 bytes and HT Greenfield Format preamble.

802.11n configuration	Throughput (Mbps)	% of nominal bit rate
20 MHz, 1 stream, 72.2 Mbps	71.44	98.9
20 MHz, 2 streams, 144.4 Mbps	141.16	97.8
40 MHz, 1 stream, 150 Mbps	146.74	97.8
40 MHz, 2 streams, 300 Mbps	286.30	95.4
40 MHz, 3 streams, 450 Mbps	414.78	92.2
40 MHz, 4 streams, 600 Mbps	539.16	89.9



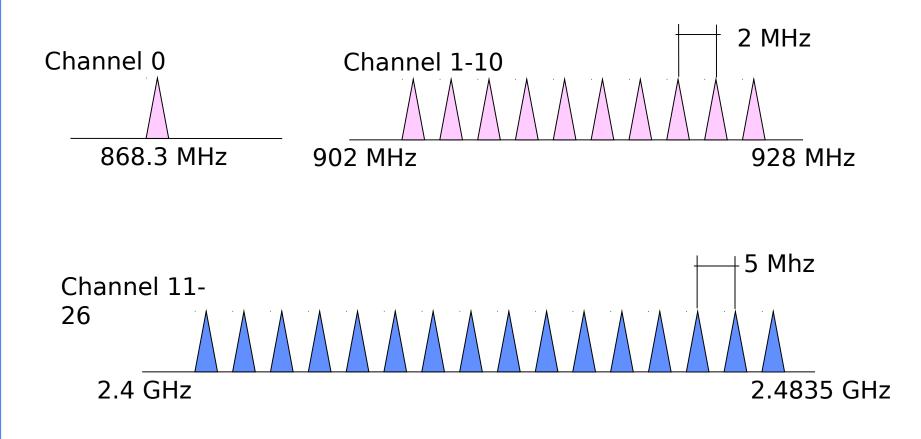
Short range wireless communications

Low-Rate Wireless Personal Area Networks (LR-WPAN): IEEE802.15.4

IEEE 802.15.4: Purpose

Very low consumption
Low complexity
Low cost

Networks that until now were unviable


How to get it?

- Few transmissions with few data
- Very small working cycles
- Very small headers

Physical layer

UPC - UNQ

Physical layer

□ IEEE 802.15.4-2003

Frequency band	Number of	Symbol rate	Modulation	Bit rate (kbps)
	channels	(kbaud)		
868 MHz	1	20	BPSK	20
915 MHz	10	40	BPSK	40
2.4 GHz	16	62.5	16-ary	250

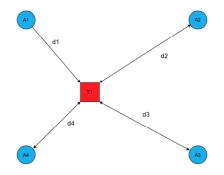
□ IEEE 802.15.4-2006: Added the following modes

Frequency band	Number of	Symbol rate	Modulation	Bit rate (kbps)
	channels	(kbaud)		
868 MHz	1	12,5	20-bit PSSS	250
915 MHz	10	50	5-bt PSSS	250
868 MHz	1	25	16-ary Orthogonal	100
915 MHz	10	62,5	16-ary Orthogonal	250

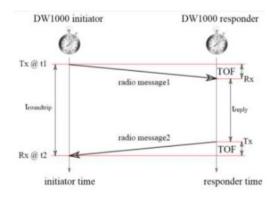
Physical layer

- □ IEEE 802.15.4a-2007
- If more channels at bands:
 - 500 MHz: subGHz
 - 3-5 GHz: low band
 - 6-10 GHz: high band
- Data rates:
 - From 100 Kbps to 27 Mbps
 - 1 Mbps at 2.4 GHz

Channel	Center frequency (MHz)	Bandwidth (MHz)
0	499.2	499.2
1	3494.4	499.2
2	3993.6	499.2
3	4492.8	499.2
4	3993.6	1331.2
5	6489.6	499.2
6	6988.8	499.2
7	6489.6	1081.6
8	7488.0	499.2
9	7987.2	499.2
10	8486.4	499.2
11	7987.2	499.2
12	8985.6	499.2
13	9484.8	499.2
14	9984.0	499.2
15	9484.8	1355


- It enables improved localization measures using a physical band with Impulse Radio Ultra Wide Band (IR-UWB)
 - 500 MHz channels will provide accuracy of ~ 2 cm

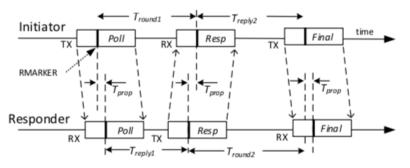
Ranging


Real Time Location Systems (RTLS)

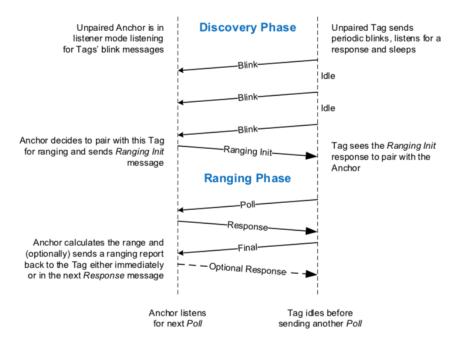
Anchors and tags

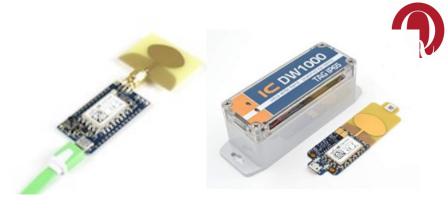
□ Two Way Ranging (TWR)

- B tells A Treply
- Sources of error:
 - Clock drifts
 - 1cm error \rightarrow 3,3 * 10⁻¹¹s error


$$TOF = \frac{t_2 - t_1 - t_{reply}}{2}$$

Ranging


- Decawave + Radino
 - Commercial product
 - Improvement: Asymmetric TWR



The Final message communicates the initiator's T_{raund} and T_{reply} times to the responder, which calculates the range to the initiator as follows:

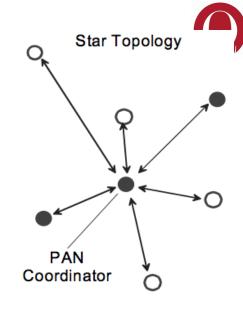
$$T_{prop} = \frac{T_{round1} \times T_{round2} - T_{reply1} \times T_{reply2}}{T_{round1} + T_{round2} + T_{reply1} + T_{reply2}}$$

Q

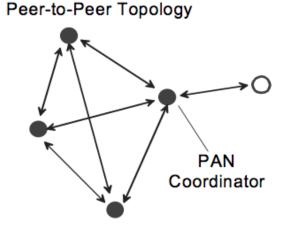
MAC Layer

Maximum Physical Service Data Unit = 127 bytes

- Device types:
 - Full Function Device: FFD
 - It is capable to accept any role in the network
 - Reduced Function Device: RFD
 - It has limited capabilities:
 - It is able to communicate only with FDD devices
 - Intended for very simple applications:
 - Ex: turning on/off a switch
 - Less processing power and memory size than FFD and cheaper!


Network topologies

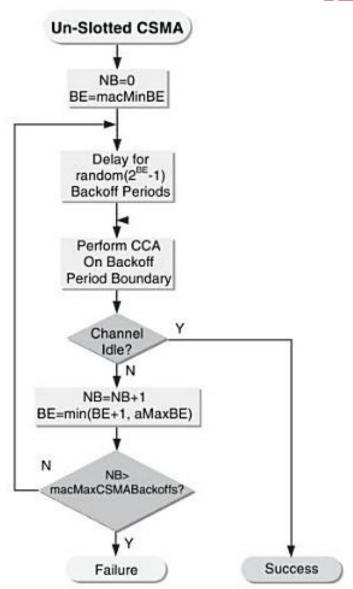
Star topology


- All devices must communicate through PAN Coordinator (FFD)
- Usually it is the initiation or the termination point for communications
- PAN coord. uses to be mains powered

Peer-to-peer topology

- Any device may communicate with any other in range
- It allows more complex network formations
- Industrial control applications, wireless sensor networks, intelligent agriculture

- Full Function Device
- O Reduced Function Device
- Communication Flow

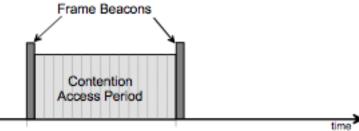


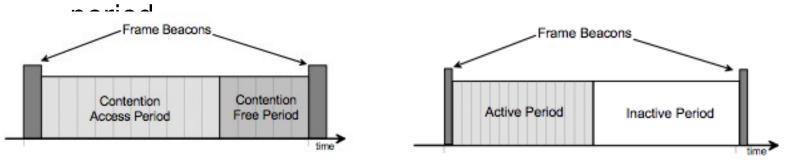
Unslotted CSMA/CA

- Similar to 802.11 but nonpersistent:
 - Devices wishing to transmit do not listen the medium when performing backoff
 - Saves energy

Parameters

- NB: Number of backoffs:
 - To give up Tx attempt
- BE: Backoff Exponent (min=3)
 - To increase CW
- Backoff period unit = 20 symbols

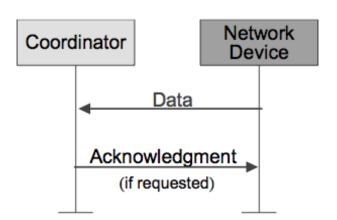




IEEE 802.15.4: Slotted CSMA/CA

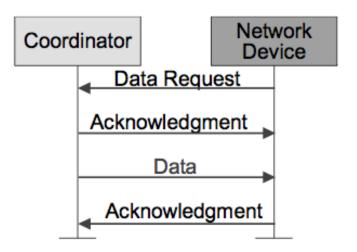
- PAN coordinator controls medium access and transmits beacons
- □ Two beacons define a superframe
- Combination of:
 - Active period
 - Inactive period: Low-power mode

- CAP: random access similar access method than non slotted
- CFP: scheduled access (optional)
 - Nodes request bandwidth to coordinator during CAP



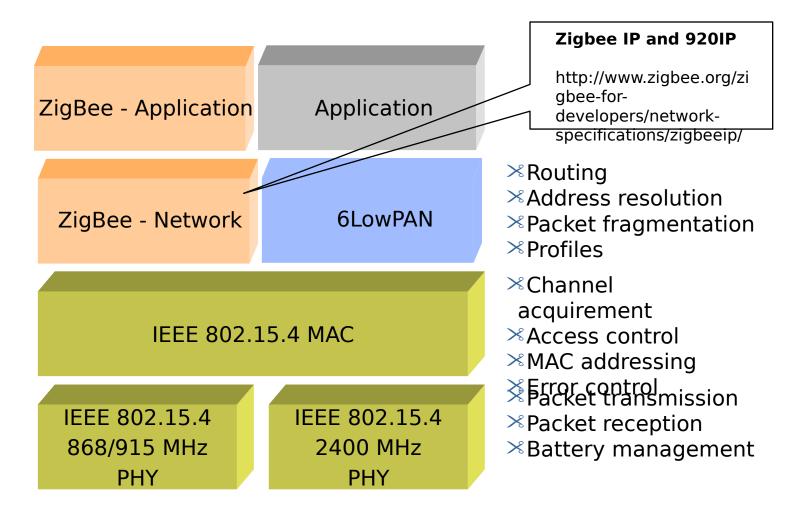
Data transfer to a coordinator: Uplink communication

- A device can initiate the transmission as soon as it is required by the upper layer
- Data + ACK must occur within the active portion of the same superframe

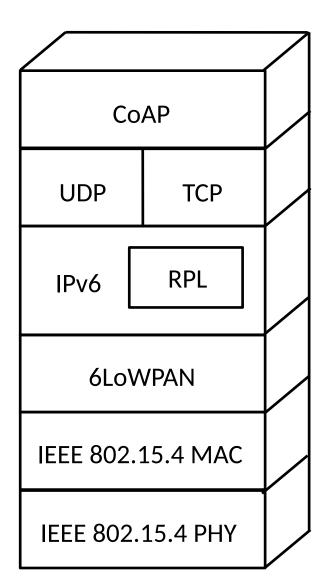


Data transfer from a coordinator: Downlink communication

□ More complicate, devices may be sleeping



Upper Layer protocols for IoT

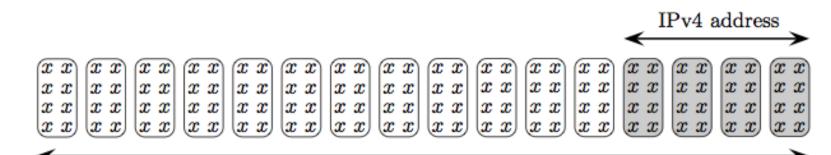

WSN protocol architectures

IETF Vision

- □ 6LoWPAN
 - IPv6 over Low power Wireless
 Personal Area Networks (6LoWPAN)
 - Adaptation layer between to (efficiently) support IPv6 over IEEE 802.15.4
 - Fragmentation
 - Header compression
 - Optimized Neighbour Discovery
 - Currently handled by the 6Lo WG
 - Sometimes, "6LoWPAN" used to denote the whole IETF protocol stack
 - Other IoT-specific protocols in the stack:
 - RPL (RFC 6550): routing
 - CoAP (RFC 7252): application layer

IPv6

- Increments address space
- Simplifies IP header
- Integrates all additional protocols and autoconfiguration in ICMPv6



IPv6 address space

IP addresses: 128 bits

IPv6 address (128 bits)

2¹²⁸ possible addresses

How big is this number?

- 340,282,366,920,938,463,463,374,607,431,768,211,456 addresses ≈ 3.4 x 10³⁸
- 6.65 x 10²³ addresses for every square meter of the Earth's surface

IPv6 address notation

- IPv6 addresses are written in hexadecimal pairs of bytes separated by colons
 - Block: a pair of bytes
 - Nibble: hexadecimal digit (half byte)
- Examples:
 - 2001:0000:0000:020c:f1ff:fefd:d2be
- To abbreviate it, within each block, leading zeros may be omitted:
 - 2001:0:0:0:20c:f1ff:fefd:d2be
- Compressed form: in every address at most one sequence of zero-blocks may be written as two consecutive colons:
 - 2001::20c:f1ff:fefd:d2be

IPv6 Header

40 bytes (minimum)

version h. size	type of service	datagram total size in octets			
datagram's number of identification		flags	fragment's offset		
Time to live	Protocol	CRC			
Source Internet address					
Destination Internet address					
Options				Padding (00)	
data					

version	traffic class	flow label				
payload length			next header	hop limit		
source IP address (4 words of 32 bits)						
destination IP address (4 words of 32 bits)						
extension headers						
data						

ICMPv6 vs. ICMPv4: change of philosophy

- Internet Control Message Protocol
- The role of ICMP in IPv4 networks:
 - Basically, ICMPv4 is intended to send error and informational messages

□ Things have changed with IPv6:

- ICMPv6 also sends error and informational messages, but also has other roles:
 - Neighbor reachability: substitutes ARP
 - Multicast membership: substitutes: IGMP
 - Address autoconfiguration: New!
 - Mobile IP

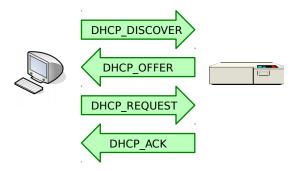
Type of ICMPv6 messages

Туре

- Destination unreachable Е 1
- 2 3 Е Packet too big
- E Time exceeded
- 4 E Parameter problem
- 128 R/R Echo request
- 129 R/R Echo reply
- 130 M Multicast Listener Query
- 131 M Multicast Listener Report
- 132 M Multicast Listener Done (leave group)
- 133 D Router solicitation
- 134 D Router advertisement
- 135 D Neighbour solicitation
- 136 D Neighbour advertisement
- 137 D Redirection
- 143 M Version 2 Multicast Listener Report
- 144 Mob Home Agent Address Discovery Request Message
- 145 Mob Home Agent Address Discovery Reply Message
- 146 Mob Mobile Prefix Solicitation
- 147 Mob Mobile Prefix Advertisement
- others

E: error

- **R/R: Request/Reply**
 - M: Multicast
 - D: Neighbour discovery
- Mob: IP mobile



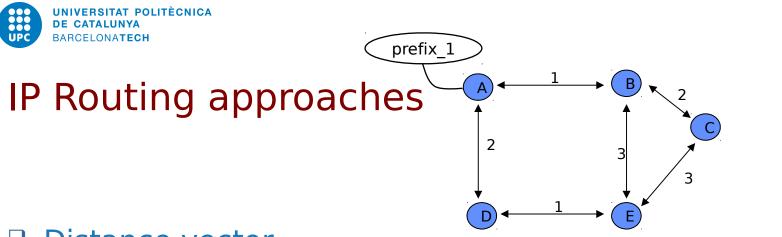
Interface configuration in IPv4

- Network interface configuration requires:
 - IP address / Netmask
 - Default router
 - DNS server

These parameters can be set:

- Manually by the user
- Automatically by a DHCP server

DHCP (Dynamic Host Configuration Protocol)

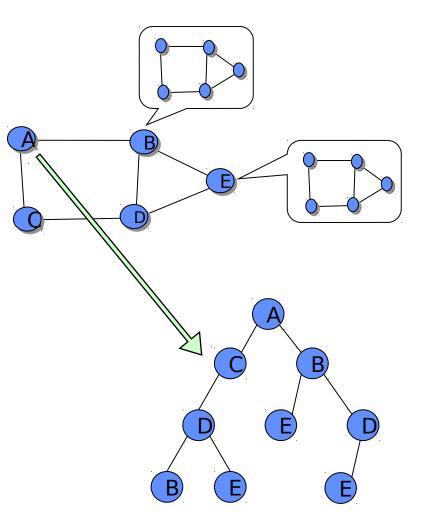

- Address assignation from a block of addresses
- DHCP allows a client to specify the requested parameters
- Automatic or manual assignation of the addresses

Interface configuration in IPv6

- Possibilities to configure network interfaces:
 - Always a minimum autoconfiguration: New!!
 - Manually
 - Using ICMP messages from routers: New!!
 - With a DHCP server
- Procedure for Autoconfiguration:
 - Link local address is always active
 - It enables to connect with any computer of the same link
 - Interface ID derived from MAC address or chosen randomly
 - Router transmits Router Advertisement (daemon radvd)
 - It sends network parameters and says what to do:
 - To use a DHCP server
 - To use a specific global prefix, to which devices have to add the Interface ID

Distance vector

- Each link has a cost
- Each node sends distance vectors (prefix, cost) to its neighbours
- When receiving a vector, routing table information is updated if:
 - There was no information about this node
 - Using the same link, the cost is different
 - Using another link, the cost is smaller
 - Each time that the table is updated, a new vector is sent
- Routers only know one path to each destination
- RIP uses this approach



IP Routing approaches

Link state

- Routers interchange information about network topology
- All have the same information
- They calculate the shortest path tree
- Routers know alternative paths to same destination
- More complex than distance vector
- OSPF uses this approach

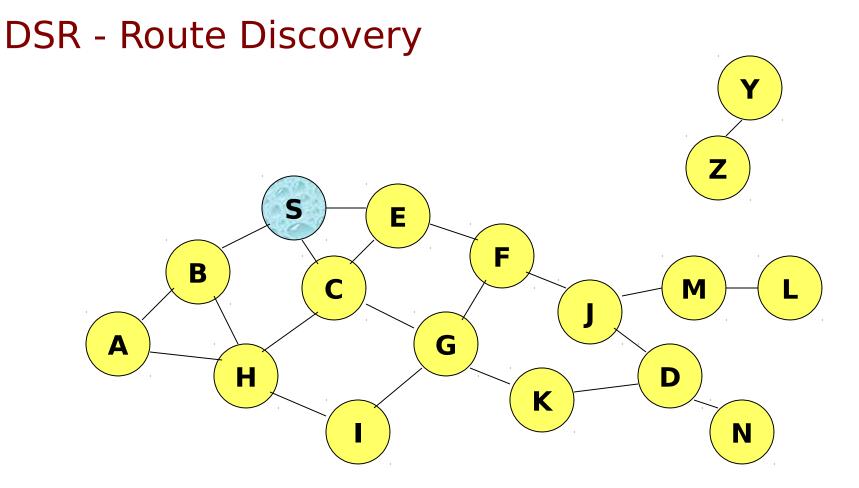
Routing in Mobile Adhoc Networks

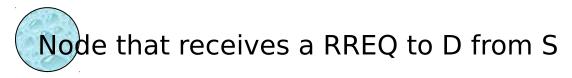
Many protocols

- Protocols adapted from fixed networks
- New protocols for ad hoc
- There is no one that behaves well in all environments
- Proactive protocols
 - Always have an updated routing table
 - Low latency (delay)
- Reactive protocols
 - Routing tables are updated only when they are active
 - Less management but more latency than proactive
- Hybrid protocols

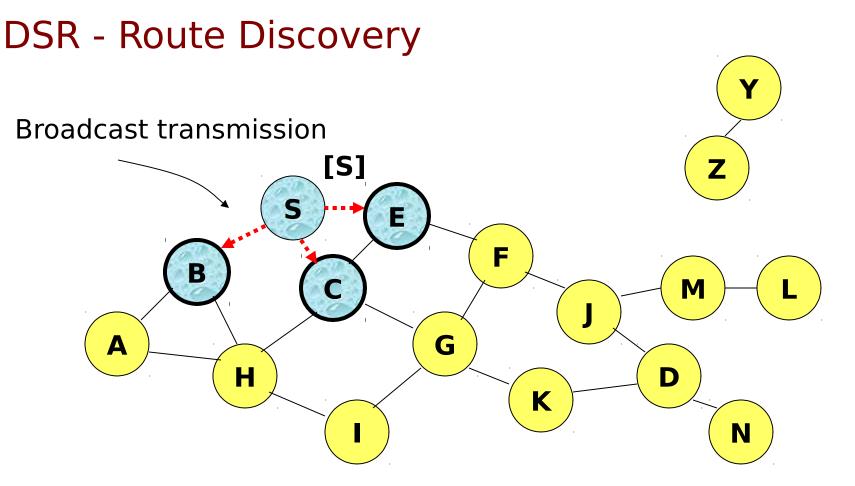
Routing protocols

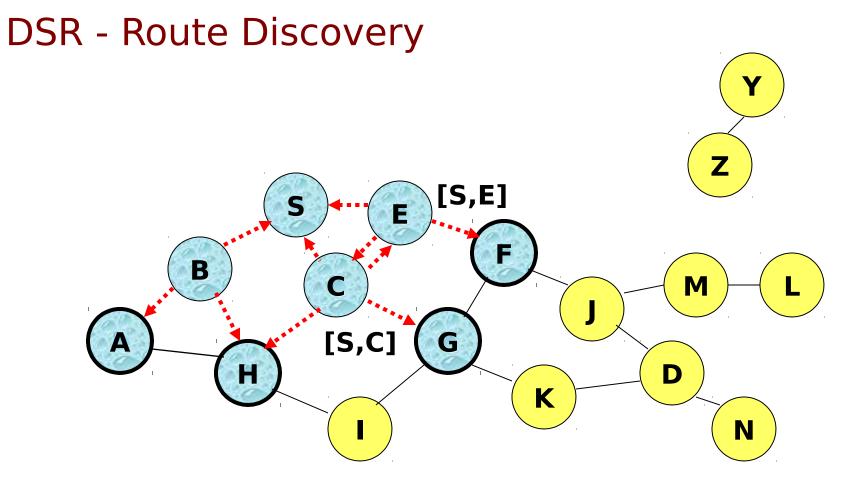
- Proactive
 - DSDV: Destination Sequenced Distance Vector
 - WRP: Wireless Routing Protocol
 - CGSR: Cluster Switch Gateway Routing
- Reactive
 - ABR: Associability Based Routing
 - DSR: Dynamic Source Routing
 - TORA: Temporally Ordered Routing Algorithm
 - AODV: Ad Hoc On-Demand Distance Vector Routing
 - DYMO: Dynamic MANET On-demand DYMO-low
 - RDMAR: Relative Distance Microdiversity Routing
 - SSR: Signal Stability Routing
 - LAR: Location-Aided Routing
 - PAR: Power-Aware Routing
- Hybrid
 - ZRP: Zone Routing Protocol




Dynamic Source Routing - DSR

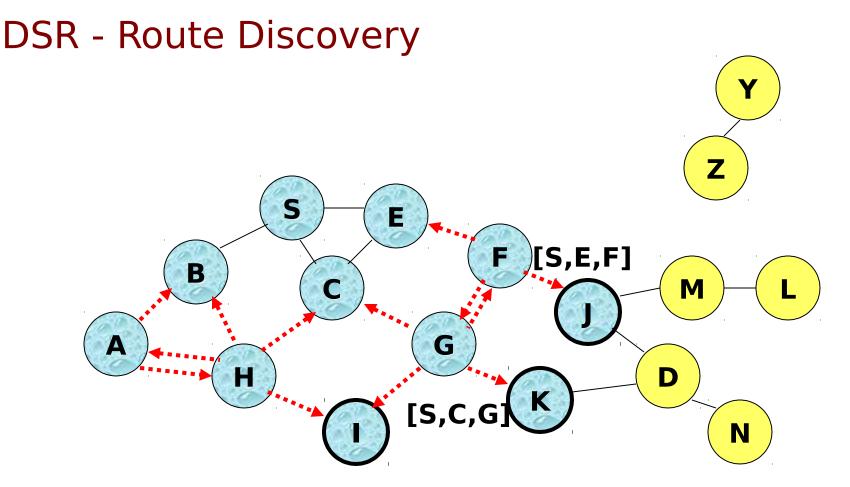
- Reactive protocol
- Source Routing
- Mobile nodes have routes in cache memory
- □ How it works:
 - When node S has to send a packet to node D, but it doesn't know the route, it initiates a Route Discovery procedure (RREQ)
 - RREQ packets propagate until destination or another node that knows the route to D
 - After that, node S stores the route and sends packets



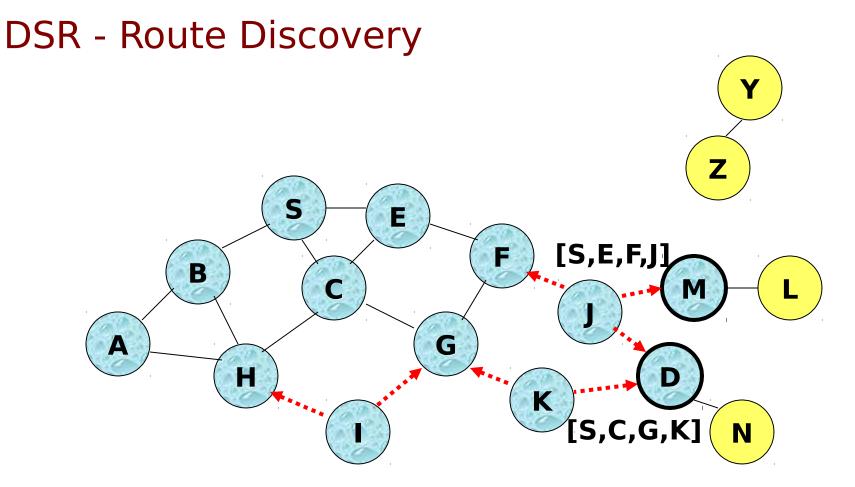


------REQ transmission

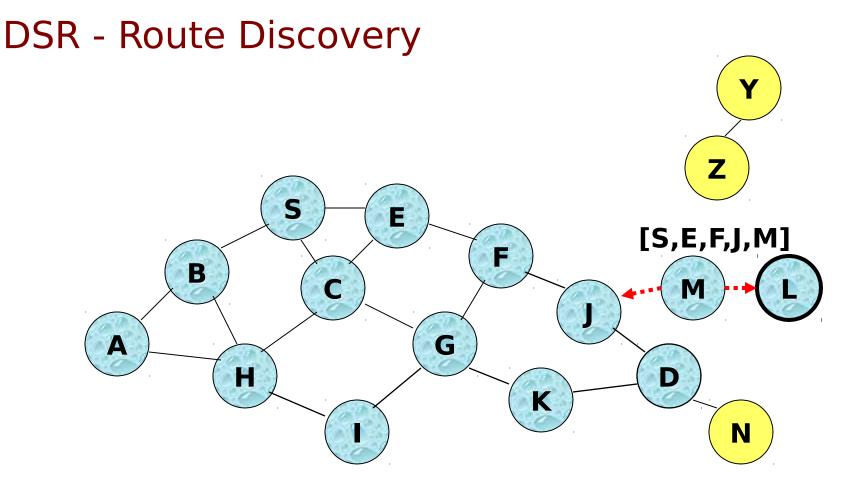
[X,Y] Route to D stored into a RREQ packet



H gets two RREQ packets. Possible collision.

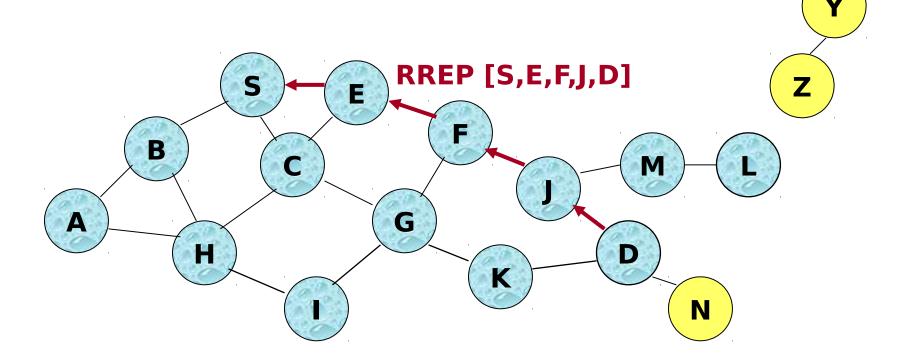


Node C receives a RREQ from G and H, but doesn't forward them because it has already done once



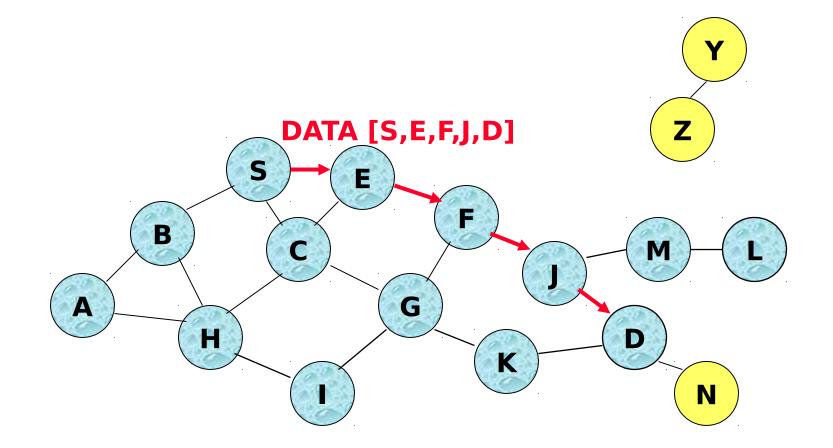
J and K nodes forward RREQ to node D

Node D doesn't forward RREQ because it is the destination



DSR - Route Reply

□ When D gets the first RREQ, it replies with a RREP


- It follows the route stored in RREQ from S to D backwards
- It works for bidirectional links

DSR – Data transmission

AODV

- Ad Hoc On-Demand Distance Vector Routing
 - Charles Perkins 1999
- Reactive routing
- Tries to improve DSR:
 - It maintains routing tables in order that packets should not content destination route
 - Routes have identification number to detect old ones
 - Routes have life time and expire
 - Each node has a list of neighbors that use him to relay data
 - When a route expires it is notified to neighbors (RERR)
 - It uses Hello packets to detect neighbor connectivity
 - When Hello packets do not arrive: connectivity failure

Application level

CoRE (Constrained RESTful Environments)

CoAP

HTTP not suitable for IoT

□ HTTP is a REST protocol but, for IoT is:

- Too complex: parsing (text to variable conversion)
- Implies the usage of TCP
- Messages with too many bytes
- No support for sleeping nodes

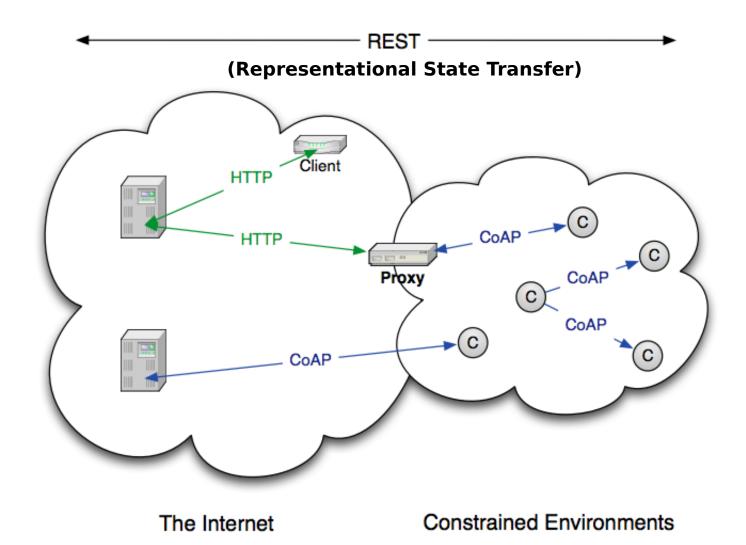
So new solutions were needed

- IETF created CoRE (Constrained RESTful Environments (CoRE) Working Group
- Objective: to provide new solutions to the existing application protocols not suited for constrained networks based on IP

CoAP (Constrained Application Protocol)

□ ls:

- A RESTful protocol
- Both synchronous and asynchronous are possible
- For constrained devices and networks
- Specialized for M2M (Machine-to-Machine) applications
- Easy to proxy to/from HTTP


Is not:

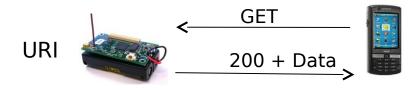
- A replacement for HTTP
- An HTTP compression
- Separated from the web

CoAP usage and architecture

CoAP

- Client/Server Model (UDP, TCP optional)
- Applicatio n Req/Res Message S UDP

- Double layer approach
 - Requests (client) and responses (server) model
 - Messages
- Interaction model of CoAP similar to model of HTTP
 - Clients send requests using a Method code of a resource (identified by a URI) on a server
 - Example of URI: coap://example.com:5454/sensors.xml
 - A response is then sent with a Response Code and resource representation, if appropriate

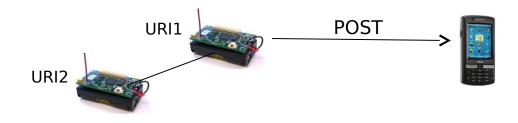


METHODS in CoAP

Basic RESTful methods

- GET, POST, PUT, DELETE
- Easily mapped to HTTP

GET retrieve resources from the WSN nodes


- Resource identified by the Uniform Resource Identifier (URI)
- Upon success, a 200 (OK) response should be sent
- PUT to modify/create an existing resource on a sensor node

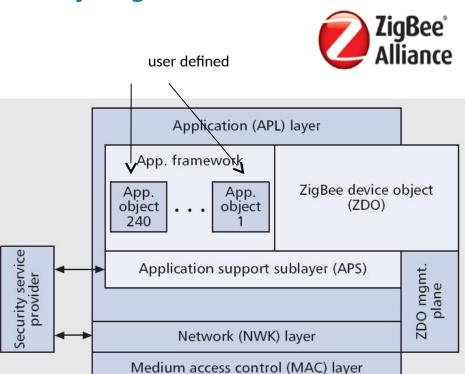
METHODS in CoAP

- POST to request the server to create / change / delete a resource under the requested URI
 - The response can be: Created / Changed / Deleted
- DELETE to request to delete the specified URI
 - Upon success, a 200 (OK) response should be sent on success

ZigBee

UPC - UNQ

105



ZigBee Vision

- Protocols architecture over IEEE 802.15.4
- Developed and promoted by ZigBee Alliance
 - First version in 2004
- Generic purpose
 - Application profiles

Defined by IEEE

ZigBee: profiles

ZigBee Building Automation

ZigBee Smart Energy

ZigBee Retail Services

ZigBee Telecom Services

ZigBee Home Automation

ZigBee Remote Control

ZigBee 3D Sync

ZigBee Health Care

ZigBee Input Device

ZigBee Versions

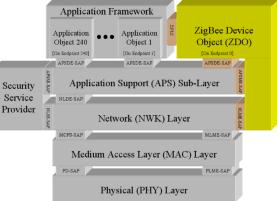
- ZigBee 2004: First version
- ZigBee 2006: Most used nowadays
- □ ZigBee 2007 also named ZigBee Pro:
 - Optimization of Network Level
 - Data aggregation
 - Some new profiles

ZigBee Network Layer tasks

Network layer:

- Create a new network
- Join and leave a network
- Assign Network addresses to newly associated devices
- Discover one-hop neighbours
- Store pertinent neighbour information
- Discover and maintain routes between devices
- Route frames to their intended destinations
- Apply security to frames

ZigBee


Application:

- Application Support Sublayer (APS)
 - Maintaining tables for binding (the ability to match two devices together based on their services and needs)
 - Forwarding messages between bound devices
 - Address mapping from 64 bit MAC to 16 bit NWK
 - Fragmentation, reassembly and reliable data transport

ZigBee

Application:

- ZigBee Device Objects (ZDO)
 - Defining the role of the device within the network (device or coordinator)
 - Initiating and/or responding to binding requests
 - Establishing a secure relationship between network devices
 - Discovering devices and determining which application services they provide

	Application layer
	Routing layer
$\left[\right]$	Transfer layer
	MAC layer
	RF media

- Z-Wave radio technology
 Originally, proprietary
 Developed by ZenSvs
 - Developed by ZenSys (2003)

 Subsequently acquired first by Sigma Designs, later by Silicon Labs (2018)
 - Z-Wave Alliance: 700 companies ITU-T
 - Protocol stack for homeG.9959 automation
 - 100 million devices sold (claimed)
 - Spec currently open to the public
 - Had been closed for many years
 - Supports mesh topology

- Physical layer (ITU-T G.9959)
 - Wireless, sub-1 GHz bands: 868 and 915 MHz
 - R1 (9.6 kbps), R2 (40 kbps), R3 (100 kbps)
- Device types
 - Controllers: poll or send commands to the slaves
 - Slaves: reply to the controllers
 - Suitable for sensors and actuators
- Routing
 - Controllers have the full network map
 - Controllers use source routing
 - Up to 4 hops, maximum
- Application layer
 - Commands

Example products

Smart alarm (presence sensor + remote on/off)

Smart plug (on/off + energy consumption monitoring)

Water shut off valve

Garage door controller

Smart window controller

UPC - UNQ

Bluetooth Low Energy

Bluetooth

- Quintessential Wireless Personal Area Network (WPAN) technology
 - Coverage < WLAN
 - Typically, ~10 m (or a few 10s of metres)
 - Main goal: communication among the devices in a person's environment
 - PC, phones, cameras, peripherals (keyboard, mouse, etc.), headsets, etc.
 - "Removing the cables"
 - Also for Internet access
 - Not so common

- Other competing technologies
 - Infrared (today mainly limited to remote control applications

Bluetooth

- Created by Ericsson (1994)
- Specified by the Bluetooth Special Interest Group
 - Bluetooth SIG
 - Established in 1998
 - Initially: Ericsson, Nokia, Toshiba, Intel, IBM
- Operates in the 2.4 GHz ISM band
- It defines a network called piconet
 - Star topology
 - One master and up to seven slaves
 - Communication takes place in timeslots (TDMA)
 - The master controls medium access and determines resource assignment
- It is possible to create larger networks
 - Scatternets

UPC - UNQ

Bluetooth

- Bluetooth 1.1
 - Ratified as IEEE 802.15.1-2002
- Bluetooth 1.2
 - Ratified as IEEE 802.15.1-2005
 - Up to 721 kbps
- Bluetooth 2.0 + Enhanced Data Rate (EDR) (2004)
 - EDR is optional, up to 2.1 Mbps
- Bluetooth 3.0 + High Speed (HS) (2009)
 - HS is optional, up to 24 Mbit/s
- Bluetooth 4.0 (2010): Bluetooth Low Energy (BLE)
 - BLE stack is not interoperable with classic Bluetooth stack
 - Bit rate is 1 Mbit/s
 - Range of (typically) various tens of meters

Bluetooth 4.1, 4.2

- Bluetooth 4.1 (2013)
 - Coexistence with other systems (802.11, 4G, ...) by coordinating interfaces' activities within a device
 - Slave allowed to be connected to more than one master
 - "IoT": i.e. devices connected to a phone can now talk directly
- Bluetooth 4.2 (2014)
 - Data channel payload size increase up to 251 bytes
 - Throughput and capacity increase
 - Integrates support for IPv6
- Bluetooth 5.0 (2016)
 - Greater bit rate: 2 Mbps
 - "LE coded": Greater range (x4)
 - Data rate decrease (125 kbps and 500 kbps)
 - Beacon size Increased from 31 bytes to 255 bytes
 - Allows for URLs, telemetry data, etc.

BLE beacons

- Advertising
 - Broadcasting ID and/or sensed data
- Applications
 - Sensed data
 - Localization
 - Geomarketing
 - Tracking
- Examples
 - Volkswagen connect
 - Samsonite Track & Go

BlueSense

Accent Systems

April Brother

Estimote

Gliworm

Gimbal Series 10

Kontaktio

KSTechnologies

Roximity

RedBear

Sensorberg

SensorTag

Tod

Source: Aislelabs

JPC - UNQ

Bluetooth Mesh

- Published in July 2017
- Need for extended topology
 - Beyond star topology

Image source: SlashGear

Low Power Wide Area Networks (LPWAN):

Sigfox LoRa Cellular IoT

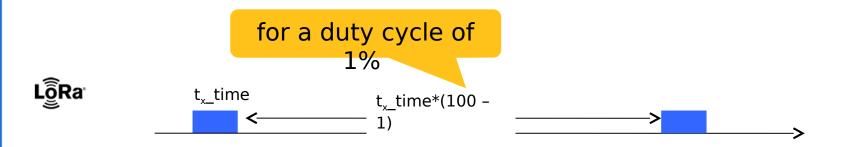
LoRa

LoRa (Long Range) is organized around LoRa Alliance industry consortium launched at MWC'15 with the following Sponsor Members:

The LoRa Alliance has defined the LoRaWAN comprising MAC and network stack around the LoRa modulation

LoRa

- □ Low Power Long Range
- □ Frequency bands: 433, 868 and 915 MHz
- Channels of 125 kHz, 250 kHz or 500 kHz using Chirp Spread Spectrum (CSS)
- □ Range:
 - Up to 15 Km in suburban areas
 - Up to 5 Km in urban areas
- LoRa modulation is copyrighted by Semtech
 - Other chip manufacturers pay royalties to Semtech



UPC - UNQ

LoRa Channels and Spreading Factors (SFs)

Sub- band	Freq. Range (MHz)	Conditions (Pwr/DC)	Spreading Factor (SF)	Bit Rate
g1	868.0 - 868.6	14 dBm @ 1%	SF=12	250 bps
g2	868.7 - 869.2	14 dBm @ 0.1%	SF=12 SF=11	440 bps
g3	869.4 - 869.65	27 dBm @ 10%		
g4	869.7 - 870 14 dBm @ 1%		SF=10	980 bps
			SF=9	1.7 Kbps
	J		SF=8	3.1 Kbps
0 channel	s of 125	SF=7	5.4 Kbps	
(Hz				

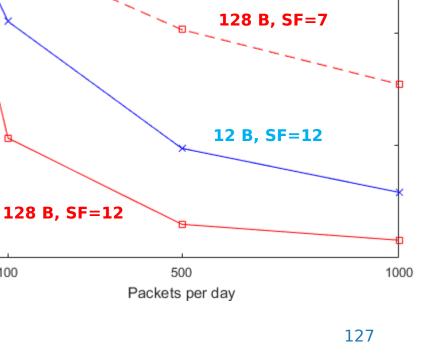
LoRa: Battery life

□ Transmission power: 14 dBm

Battery Lifetime (Years)

10

5

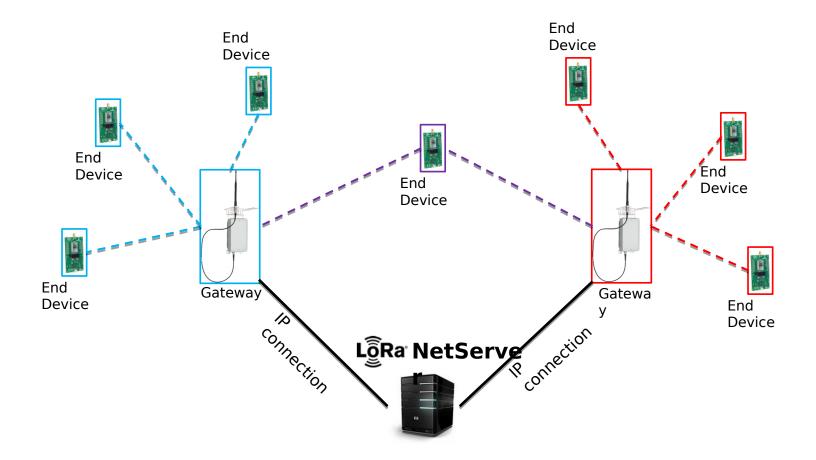

0

0

100

- Battery: 19 Ah (size D) \$26 Voltage: 3.6 V
- Platform idle

consumption: 0.1 mA


12 B. SF=7

LoRaWAN Network Architecture

LoRaWAN elements

LoRa Gateway:

- Maintains radio connectivity
- Acts as transparent bridge
- More than one gateway per end device is possible
- Enables seamless network upgrade

LoRa Server:

- Maintains association with end node
- Configures data rates
- Removes duplicates
- Handles security and access control
- Interfaces with applications

LoRa devices

Devices

Based on Semtech chip

Heltec LoRa example.ino Defined to use #define USE JOINING Joinning (OTAA) #ifdef USE_JOINING // OTAA join keys // This EUI must be in little-endian format, so least-significant-byte See the master app // first. When copying an EUI from ttnctl output, this means to reverse application defined at TTN // the bytes. For TTN issued EUIs the last bytes should be 0xD5, 0xB3, // 0x70. static const u1 t PROGMEM APPEUI[8] = { 0x51, 0x13, 0x01, 0xD0, 0x7E, 0xD5, 0xB3, 0x70 }; void os getArtEui (u1 t* buf) { APPLICATION EUIS **AppEUI:** Application memcpy P(buf, APPEUI, 8); identification // This should also be in little endian format, see above. static const u1_t PROGMEM DEVEUI[8] = { 0xF3, 0xA1, 0x29, 0xA9, 0x99, 0x0D, 0xF0, 0x00 }; void os getDevEui (u1 t* buf) { memcpy_P(buf, DEVEUI, 8); DevEUI: See the value on the TTN console once the device has been created // This key should be in big endian format (or, since it is not really a // number but a block of memory, endianness does not really apply). In // practice, a key taken from ttnctl can be copied as-is. // The key shown here is the semtech default key. static const u1_t PROGMEM APPKEY[16] = { 0x1F, 0x7E, 0xF5, 0x99, 0x43, 0x62, 0x8B, 0x2D, 0x88, 0x6A, 0xF6, 0xCE, 0x46, 0xCD, 0x05, 0x4E }; DevEUI: See the value on the void os_getDevKey (u1_t* buf) { TTN console once the device memcpy P(buf, APPKEY, 16); has been created

Arduino with Dragino LoRa Shield

LoRa Gateways

Packet Forwarder

```
"radio_0": {
    "enable": true,
    "type": "SX1257",
    "freq": 867500000,
    "rssi_offset": -166.0,
    "tx_enable": true
}
"chan_multiSF_0": {
    /* Lora MAC channel, 125kHz, all SF,
868.1 MHz */
    "enable": true,
    "radio": 1,
    "if": -400000
```

}

```
"gateway_conf": {
    "gateway_ID": "AA555A000000002",
```

```
//TTN SERVER
    "server address":
```

"router.eu.thethings.network", "serv_port_up": 1700, "serv port down": 1700, Details (IP43 and IP65 version)

olimensions (1P43 and 1P65 version)

LoRa Server

□ Install your own LoRa Server

•••			localhost:8080/	?#/organizations/1/applications	0	Ô (†
€	LoRa Server			Q Search organization, applic	cation, gateway or device	? 🕒 admin
	Network-servers Gateway-profiles	Applications				+ CREATE
	Organizations	ID	Name	Service-profile	Description	
•	All users	1	air-quality	EU868	Air-quality application	
loras	erver 👻	2	parking-sensor	EU868	Parking sensor applicatio	n
\$	Org. settings	3	weather-station	EU868	Weather-station applicati	on
•	Org. users				Rows per page: 10 ▼ 1-3 of	f3 < >
.	Service-profiles					
	Device-profiles					
\bigcirc	Gateways					
	Applications					

LoRa Server

Use The Things Network server (TTN)

	DNSOLE	EDITION	Applications	Gateways Sup	oport 🕹 🖡	ora-gw-maxixe
pplications >	🥪 zane	-ztrack-g	os-tracker > Devices	> 📰 zcar-gp:	stracker	
					Overview	Data Setting
DEVICE O	VERVIE	w				
Applicat	tion ID	zane-ztra	ck-gps-tracker			
Dev	vice ID zca	ar-gpstra	cker			
	vation lethod	ABP				
Devi	ce EUI	⇔ ≒	00 06 11 00 90 42 90	49 🖹		
Applicati	on EUI	o =	70 B3 D5 7E D0 01 EB	28		
Device A	ddress	\$	2601114F 🖹			
Network S	ession Key	↔ ↔	•			
App Sessie	on Key	⇔ ≒	۰			Ē
Fran	Status • mes up 58 s down 0		s ago rame counters			
DOWNLIN	IK					
Schedulin	g		FPG	ort		
replace	first	last	1	٢		Confirmed
Payload						

	LE ITY EDITION	Applications	Gateways	Support	alora-gw-maxixe 🗸
Gateways > 🏷 eui	-0005fcc23d0de8b	e			
Frequency Plan	Europe 868MHz				
Router	ttn-router-eu				
Gateway Key	• • • • • • • • • • • • • • • • • • • •				base64
Last Seen	3 months ago				
Received Messages	1813				
Transmitted Messages					
INFORMATION	1				/ edit info
Brand	Lorix				
Mode	One				
Antenna	0				
LOCATION					/ edit location
LOCATION					edit location
	outdoor				/ edit location
LOCATION Antenna Placement Altitude					<pre>edit location</pre>
Antenna Placement				lat	
Antenna Placement Altitude				lat lng	-23.85322712 35.34693468
Antenna Placement Altitude +					-23.85322712
Antenna Placement Altitude +	•	Max	<u>e</u> .		-23.85322712 35.34693468

WORK

LoRa initiative

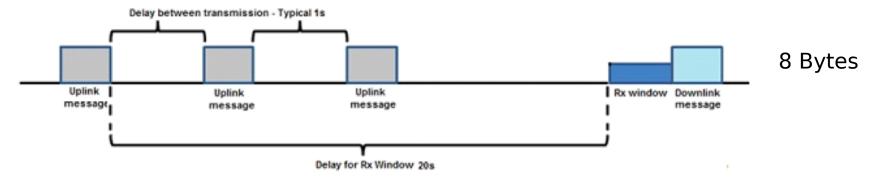
Building a community network for IoT THE THINGS NET

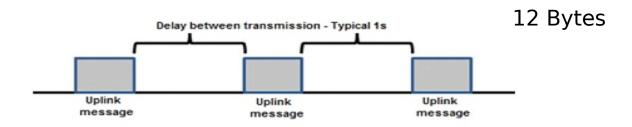
Sigfox

UPC - UNQ

Sigfox

- Developed by a French company
 - Patented technology, several chip manufacturers
- Ultra Narrow Band (100 Hz in EU and 600 Hz in US)
- Bit Rate: 100 bps
 - Other bits are claimed to be possible (up to 1 Kbps)
- Up to 140 messages per day
- Maximum message size: 12 bytes
- ACKs are optional, up to 4 per day





Sigfox transmission

Acknowledged. Up to 4 ACKs per day

Unacknowledged

Sigfox

- Range
 - From 30 to 50 Km in rural areas
 - From 3 to 10 Km in urban areas
- Power consumption
 - Transmitted power
 - From -20 to +20 dBm
 - Required current
 - From 40 to 300 mA while transmitting
 - Example:
 - Libelium Sigfox 868
 - Libelium Sigfox 900

State	Power Consumption
OFF	0 mA
Transmitting data	~ 52 mA
Receiving data	~ 13 mA

State	Power Consumption
OFF	0 mA
Transmitting data	~ 230 mA
Receiving data	~ 13 mA

Sigfox coverage

- **Operator in Spain**
 - Cellnex

Eston

Latvi

B

Lithuania

Baltic Sea

Poland

Berlin German

North Sea

United Kingdom

Devices

Some examples

- Field coverage
- Pool analyzer
- Water meter
- Defibrillator
- Livestock monitor
- Parking monitor
- Waste monitor
 -

Sigfox

Received messages

Can be received by more than one base station

		1	page i						
Time	Delay (s)	Header	Data / Decoding	TAP	RSSI (dBm)	Signal (dB)	Freq (MHz)	Rep	Callbacks
				0985	-125.70	12.79	868.1911	2	
2014-06-11 17:30:45	1.1	0000	0000000000000000001a0c62	0909	-137.40	ell 6.96	868.1857	2	0
				06FC	-110.00	e 8.73	868.1902	3	
						~			
2014-06-11 10:12:16		0000		0776	-129.10	7.61	868.1901	1	0
2014-06-11 10.12.16	<1	0000	00000000000000000000000000000000000000	06FC	-106.00	25.89	868.1857	2	U
0044.00.44.40.44.40			000000000000000000000000000000000000000	07F1	-125.70	12.61	868.1904	2	•
2014-06-11 10:11:49	2.3	0000	000000000000000000180c62	06FC	-110.00	28.51	868.1857	2	o
				070B	-125.70	5.83	868.1853	1	•
2014-06-11 10:11:38	<1	0000	000000000000000000000000000000000000000	06FC	-105.00	26.68	868.1913	3	o
				070B	-125.70	a 1 8.55	868.1901	1	•
2014-06-11 10:11:25	<1	0000	000000000000000000180c62	06FC	-104.00	27.07	868.1903	3	o

page 1

UPC - UNQ

Cellular IoT (CIoT)

UPC - UNQ

CloT Requirements

- Be competitive in front arriving LPWAN (Sigfox, LoRa, ...)
 - Cheaper chips in comparison to 2G/3G/4G
 - Lower complexity
 - Duration of the battery up to 10 years
 - Lower power
 - Better range
 - Cover deep-indoor
 - Security: Using SIM
 - Safety: Using a licensed band

Three options:

- EC-GSM: Extended Coverage GSM
- LTE-M: LTE Machine
- NB-IoT: Narrow Band IoT

143

EC-GSM: Extended Coverage GSM

EC-GSM: Extended Coverage GSM

- GSM still dominant technology
- Increases coverage up to 20 dB respect to GPRS
- Capacity of up to 50.000 devices with a single transceiver
- Range: less than 15 Km
- Bit rate: 10 Kbps
- Low cost

GSM/GPS/GPRS, M2M

LTE-M: LTE Machine

□ LTE-M: LTE Machine type communication

- Also know as Category M (Cat-M1) or eMTC (enhanced Machine Type Communications)
- Power saving mode
- Extend battery life for LTE-M to 10 years or more
 - eDRX: extended discontinuous reception
 - Limits transmission power to 20 dBm
- Reduced device cost
- Extending the range with additional link budget of 15 dB
 - Range: 10 Km
- Bit rate: 1 Mbps
- Packet size: Between 100 and 1000 Bytes

NB-IoT: Narrow Band IoT

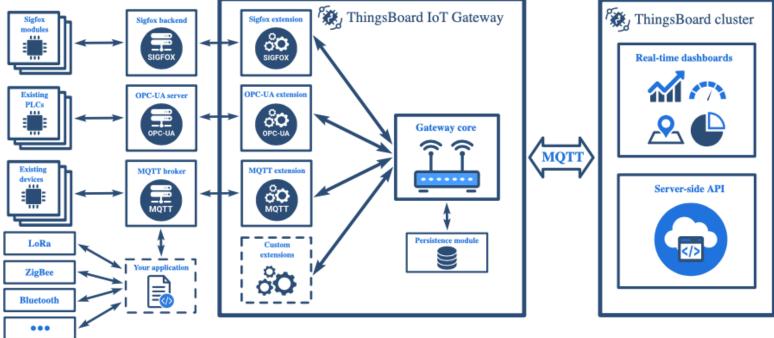
NB-IoT: Narrow Band IoT

- Each 200 KHz carrier can support more than 200.000 subscribers
- Reduces control packets: lean carrier or lean procedures
- Extended coverage up to 20 dB
 - Range: 15 Km
- Bit rate: 150 Kbps
- Battery saving features
 - Transmission power limited to 20 dBm
- NB-IoT device complexity simpler than LTE-N
 - No additional power amplifier is required

Ericsson: Cellular networks for massive IoT

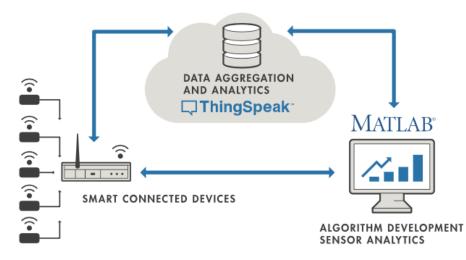
Data Management Platforms

Huge amount of data needs to be stored, processed and analysed The Things Network: LoRa Things Board Thing Speak: MATLAB oriented


. . .

ThingsBoard Architecture

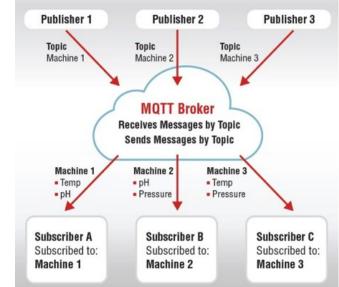
- Open-source IoT platform
- Enables rapid development, management and scaling of IoT projects
- Provides out-of-the-box IoT cloud or on-premises solution that will enable server-side infrastructure for your IoT applications


JPC - UNQ

ThingSpeak

- IoT analytics platform service that allows:
 - Aggregate, visualize, and analyse live data streams in the cloud You can send data to ThingSpeak from your devices, create instant visualizations of live data, and send alerts using web services like Twitter
 - With MATLAB analytics inside ThingSpeak, you can write and execute MATLAB code to perform pre-processing, visualizations, and analyses

MQTT: Message Queuing Telemetry Transport


- Oasis standard Oasis open sandards. Open source.
 - Non-profit consortium that drives the development, convergence and adoption of open standards for the global information society
- Machine-to-machine connectivity protocol
 - Lightweight and simple
 - Agnostic to the content of the payload
 - Small transport overhead and protocol exchanges minimized to reduce network traffic
 - A mechanism to notify interested parties when an abnormal disconnection occurs.
- Runs over TCP/IP, or over other network protocols that provide ordered, lossless, bi-directional connections
- Uses the publish/subscribe message pattern which provides one-to-many message distribution and decoupling of applications

MQTT: Message Queuing Telemetry Transport

- MQTT is based on a publish-subscribe structure:
 - A Publisher sends messages according to Topics, to specified Brokers
 - A Broker acts as a switchboard, accepting messages from publishers on specified topics, and sending them to subscribers to those Topics
 - A Subscriber receives messages from connected Brokers and specified Topics

MQTT Pub/Sub

Clients connect to a "Broker"

Clients subscribe to topics:

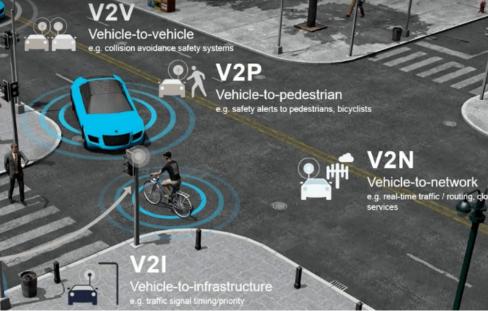
- client.subscribe('toggleLight/1');
- client.subscribe('toggleLight/2');
- client.subscribe('toggleLight/3');
- Clients can publish messages to topics:
 - client.publish('toggleLight/1', 'toggle');
 - client.publish('toggleLight/2', 'toggle');
- All clients receive all messages published to topics they subscribe to
- Messages can be anything:
 - Text
 - Images
 - etc

Name	Value	Direction of flow	Description	
Reserved	0	Forbidden	Reserved	
CONNECT	1	Client to Server	Connection request	
CONNACK	2	Server to Client	Connect acknowledgment	
PUBLISH	3	Client to Server or Server to Client	Publish message	
PUBACK	4	Client to Server or Server to Client	Publish acknowledgment (QoS 1)	
PUBREC	5	Client to Server or Server to Client	Publish received (QoS 2 delivery part 1)	
PUBREL	6	Client to Server or Server to Client	Publish release (QoS 2 delivery part 2)	
PUBCOMP	7	Client to Server or Server to Client	Publish complete (QoS 2 delivery part 3)	
SUBSCRIBE	8	Client to Server	Subscribe request	
SUBACK	9	Server to Client	Subscribe acknowledgment	
UNSUBSCRIBE	10	Client to Server	Unsubscribe request	
UNSUBACK	11	Server to Client	Unsubscribe acknowledgment	
PINGREQ	12	Client to Server	PING request	
PINGRESP	13	Server to Client	PING response	
DISCONNECT	14	Client to Server or Server to Client	Disconnect notification	
AUTH	15	Client to Server or Server to Client	Authentication exchange	

Vehicular Networks

Jordi Casademont jordi.casademont@upc.edu

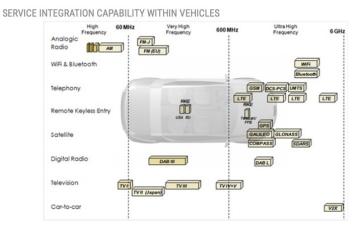
153



Introduction

- What is V2X?
 - Enabling vehicles with wireless communication capabilities
 - To communicate with:
 - Other vehicles (V2V)
 - The infrastructures (V2I)
 - Pedestrians, bikes scooters (Vulnerable Road Users)
 - Environment
 - Global Internet

Source: Volkswagen Golf 2020 Car2X

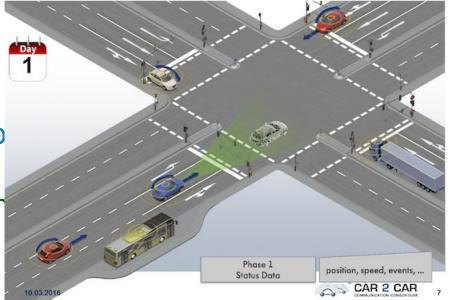

Source: Qualcom

Day 0: Local perception sensors

- Today, without communications
 - Vehicle knows about objects detected by its local sensors
 - Adaptive Cruise Control (ACC)
 - Front Collision Warning
 - Lane Departure Warning
 - Lane Change Assist
 - Park Distance Control
 - Park Assist

Source: Ficosa

Source: Car2car

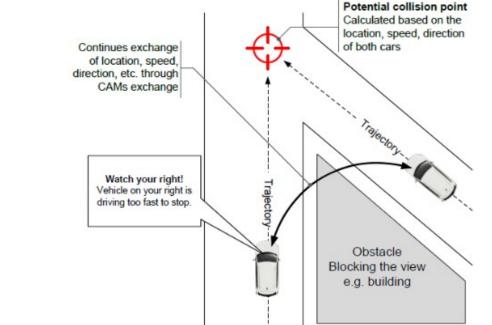

155

Day 1: Awareness Driving

- Vehicle status data
 - Position
 - Speed
 - Events
- Infrastructure informatio
 - Traffic light phases
 - Speed recommendation
- Services
 - Traffic jam
 - Road works
 - Intersection collision warning
 - Emergency / stationary vehicle warning
 - Green Light Optimal Speed Advisory
 - In-Vehicle Information

NNQ

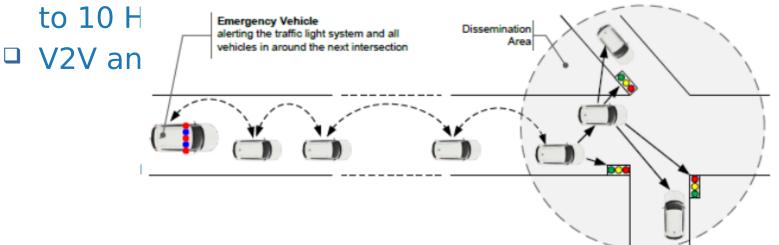
UPC - I


. . .

Cooperative Awareness Basic Service

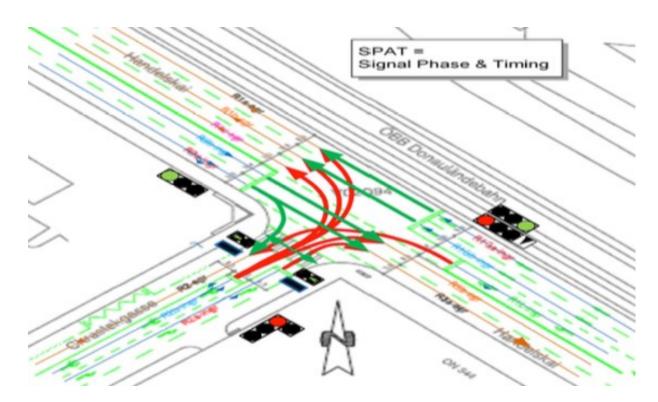
□ CAM: Cooperative Awareness Message ETSI EN 302 637-2 V1.4.1 (2019-01)

- SAE J2735: Basic Safety Message (BSM)
- Periodic messages sent by all stations giving information about status and attribute information of the originating device
 - Status: Time nosition motion state activated systems,



Decentralized Environmental Notification Basic Service

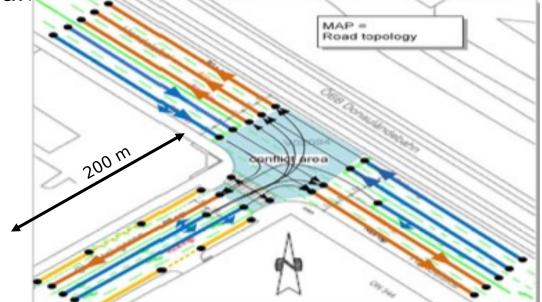
- DENM (Decentralised Environmental Notification Message)
- ETSI EN 302 637-3 V1.3.0 (2018-08)
 - Event-driven messages sent by OBU/RSU upon detection of an abnormal situation (traffic jam, break down vehicle, roadworks ...) to alert other vehicles or road users within a geographical area
- Generation interval (as long as the event is present): 1



Traffic Light Manoeuvre (TLM) Service

SPATEM (Signal Phase and Timing Extended Message) ETSI EN 103 301 V1.2.1 (2018-08) SAE J2735

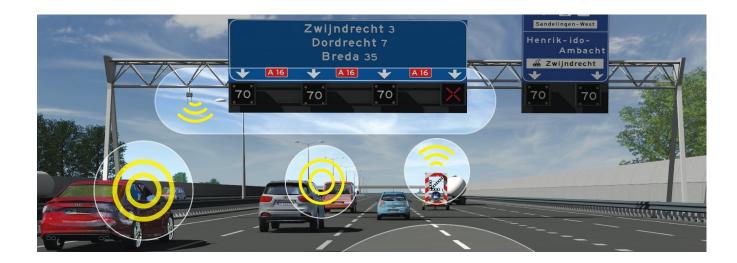
 SPATEM is SAE's SPAT message with an additional ETSI header



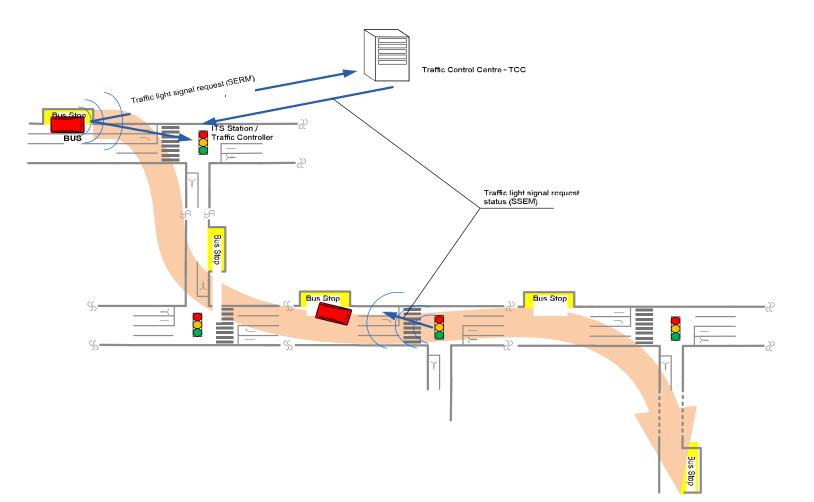
Road and Lane Topology (RLT) service

MAPEM (Map data Extended Message) ETSI EN 103 301 V1.2.1 (2018-08) SAE J2735

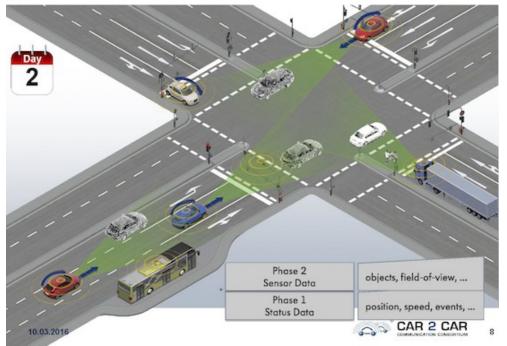
- MAPEM is SAE's MAP message with an additional ETSI header
 - Topological definition of lanes within an intersection or road-segment
 - Transmitted simultaneously with SPATEMs



Infrastructure to Vehicle Information (IVI) service Infrastructure broadcasts IVIM messages ETSI EN 103 301 V1.2.1 (2018-08)


- CEN ISO/TS 19321
- □ IVIM supports mandatory and advisory road signage:
 - Contextual speeds
 - Road works warnings
 - Static or variable road signs

Traffic Light Control (TLC) Service

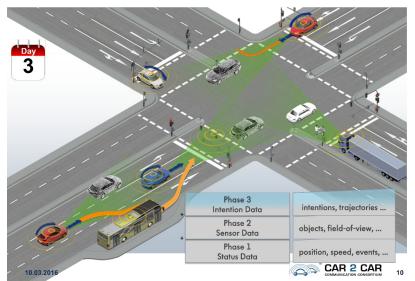


Day 2: Sensing Driving

Collective perception

- Vehicles broadcast their locally perceived objects:
 - Sensor data
- Much more amount of data to transmit!!

- Services
 - Road works 2.0: triggered by vehicles
 - Overtaking warning
 - Connected ACC

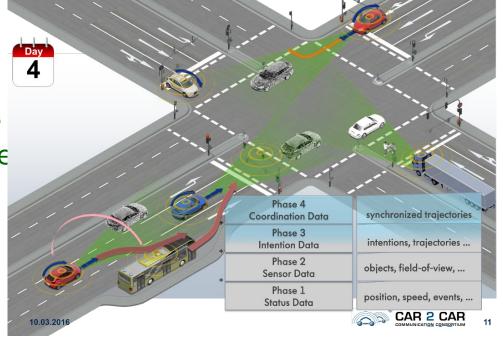

JPC - UNQ

Day 3: Cooperative Driving

- Intention data ("My plan")
 - Vehicles send intended manoeuvres and trajectories

Services

- Lane-merging assistance
- Cooperative ACC
- Vulnerable Road User (VRU) warning
- Intentions are used by automated driving algorithms to enable vehicles to accurately predict what others will do and optimize their own decisions and actions

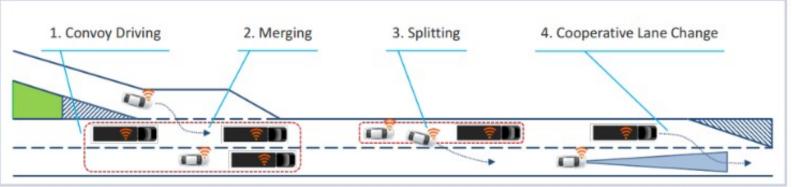


Day 4: Synchronized Cooperative Driving

- Coordination data
 - Synchronized trajectories
 - Orders
- Vehicles are autonomously driven through almost all situations and are able to exchange and synchronize driving trajectories among each other

Services

- Cooperative merging
- Overtaking assistance
- Intersection assistance
- Dynamic platooning
- VRU assistance


Day 3 - 4: Cooperative Driving

Use case: Platooning

- V2X facilitates negotiating planned manoeuvres:
 - Merging
 - Creating gaps
 - Yielding right of way

http://news.mit.edu/2016/driverless-truck-platoons-save-time-fuel-1221

JPC - UNQ

Service requirements for day 1-2 applications

Proposed performance parameters

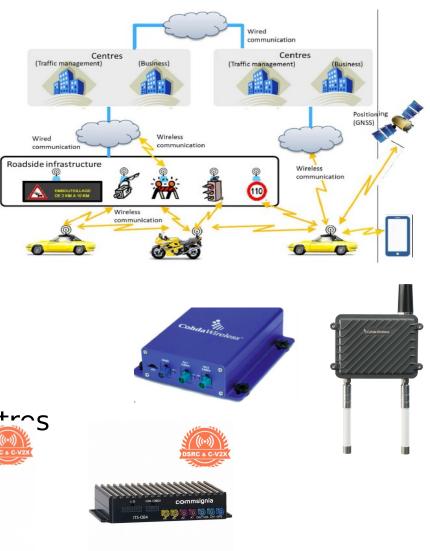
[ETSI TR 102 638 V1.1.1 2009-06. Intelligent Transport Systems (ITS); Vehicular communications; Basic Set of Applications; Definitions]

Safety Service	Use case	Min. frequency	Max. Latency
Vehicle status warning	Emergency electronic brake lights	10 Hz	100 ms
	Abnormal condition warning	1 Hz	100 ms
Traffic hazard warning	Wrong way driving warning	10 Hz	100 ms
	Traffic condition warning	1 Hz	100 ms
Dynamic vehicle warning	Overtaking vehicle warning	10 Hz	100 ms
	Pre-crash sensing warning	10 Hz	50 ms
Non-safety Service	Use case	Min. frequency	Max. Latency
Traffic Management	Speed limits	1 Hz	100 ms
	Traffic light optimal speed	2 Hz	100 ms

Service requirements for day 3-4 applications

Proposed performance parameters
 [ETSI TS 122 186 V14.4.0 2018-10. 5G; Service requirements for enhanced V2X scenarios. (3GPP TS 22.186 version 15.40.0 Release 15]

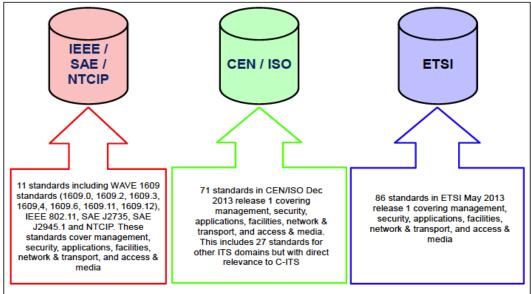
Service	Tx rate (message/s)	Max. Latency (ms)	Data rate (Mbps)
Vehicles Platooning	30 to 50	10 to 20	up to 65
Advanced Driving	10 to 50	3 to 100	Up to 50
Sensor info sharing	10	3 to 100	10 to 1000
Video sharing		10 to 50	10 to 700
Remote Driving		5	25



Intelligent Transport System (ITS) Architecture

Elements:

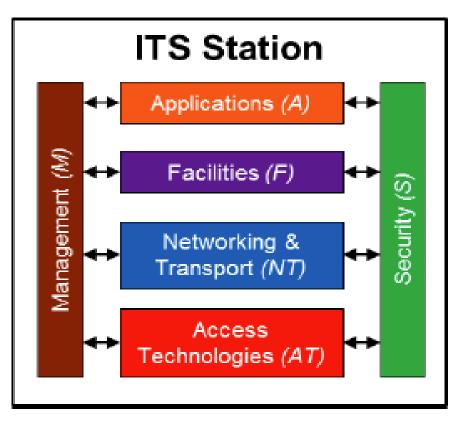
- On Board Unit (OBU)
 - Vehicular
 - Personal
- Road Side Unit (RSU)
- Central ITS station
 Provider's backoffice
 Traction gement contros
 OBUMAN (V2X PRX)



Standardization of communication protocols

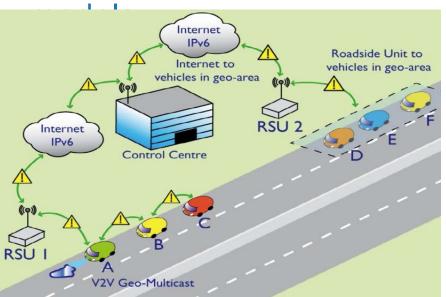
- □ 5 architectures:
 - International: CEN ISO
 - Europe: ETSI
 - America: IEEE, SAE, NTCIP
 - Korea
 - Japan: ARIB

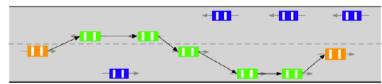
- IEEE: Institute of Electrical and Electronics Engineers
- SAE: Society of Automotive Engineers
- NTCIP: National Transportation Communications for Intelligent Transportation System Protocol
- CEN: Comité Européen de Normalisation
- ISO: International Organization for Standardization

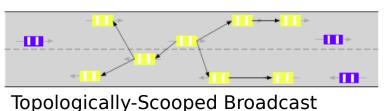

JPC - UNQ

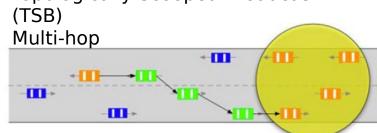
"Main" Protocol architecture

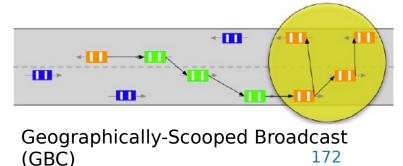
New protocol stack


OSI Communication **Protocols Stack** Application Presentation Session Transport Network Link Physical




Forwarding in GeoNetworking


- Different types of forwarding based on the geographic position of the destination
- Infrastructure operators interested in other



Geo-Unicast (GUC)

Geographically-Scooped Anycast (GAC)

ITS security functional model

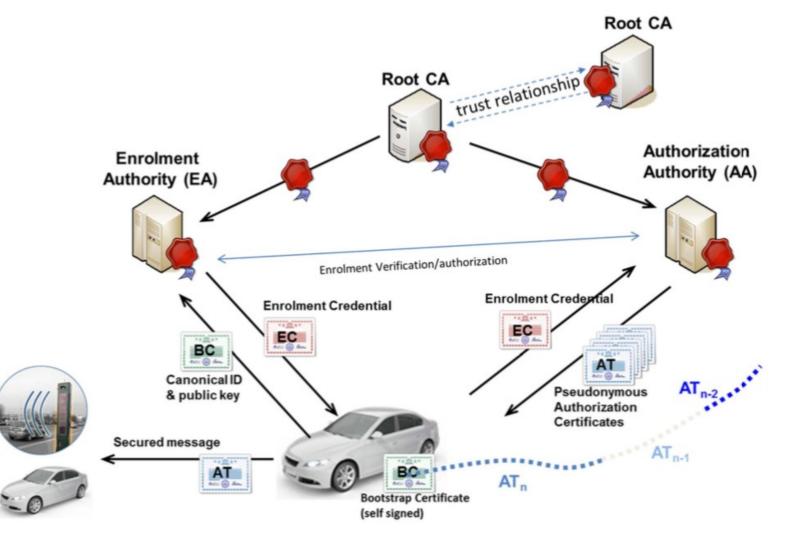


Figure 11: PKI architecture

New markets based on V2X communications

Artificial Intelligence

> Training data for autonomous vehicles

- > Intelligent traffic rerouting
- > Remote driving features
- > Behavioral assistance

> Autonomous vehicle simulation & risk management

Insurance

Smart City

> Traffic flow assistance

> Automated road toll collection

Intelligent road infrastructure

> Urban planning

> Parking services

- > Usage-based insurance contracts
- > Pay-as-you-drive
- > Pay-how-you-drive > Intelligent insurance risk assessmer
- > Vehicle usage monitoring and scorir

Advertisement

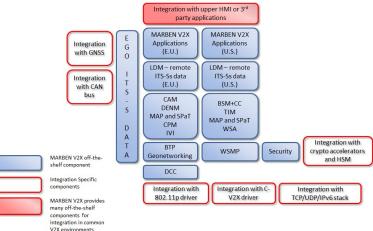
> Ride-sharing services

Ride-hailing services

> Car pooling

> Location-based promotion & review

Mobility Services

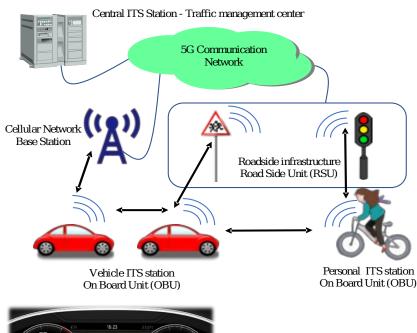

- On-demand services and smart virtu
- > Business advisory services
- Concierge services
- > In-car offerings and targeted tailore

ITS-RS2-M

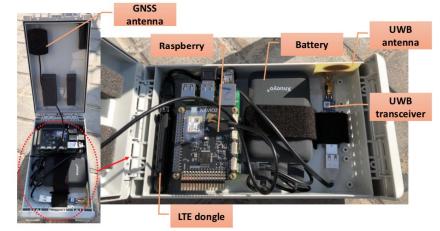
Source: www.v2x.network

V2X Software stack

V2X Chipsets

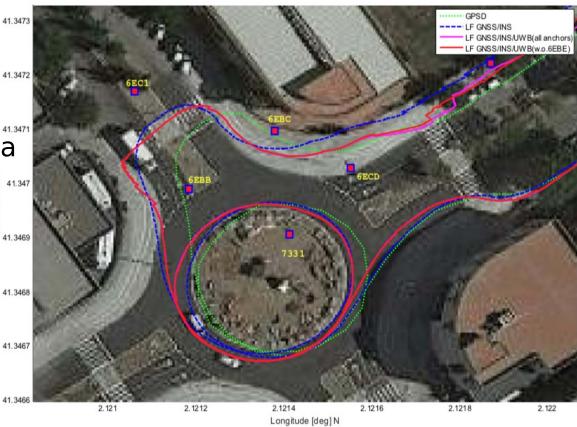


 Commsignia, Cohda Wireless, Marven, Savari



Use case with open source softwar
UPC, i2CAT, SEAT, Ficosa, Movistar, CTTC
Vanetza

Raspberry Pi 3



Positioning

- One highly critical point in C-ITS is positioning accuracy
- GNSS systems can not provide lane-accuracy
- Hybrid systems: sensor fusion
 - GNSS
 - Inertial sensors
 - Ultra Wide Band 41.3472
 ranging 41.3471
 - IEEE 802.15.4a

